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ABSTRACT

BACKGROUND: Neurodevelopmental conditions, such as autism, are highly heterogeneous at both the mechanistic
and phenotypic levels. Therefore, parsing heterogeneity is vital for uncovering underlying processes that could
inform the development of targeted, personalized support. We aimed to parse heterogeneity in autism by identifying
subgroups that converge at both the phenotypic and molecular levels.

METHODS: An imaging transcriptomics approach was used to link neuroanatomical imaging-derived phenotypes in
autism to whole-brain gene expression signatures provided by the Allen Human Brain Atlas. Neuroimaging and
clinical data of 359 autistic participants ages 6 to 30 years were provided by EU-AIMS (European Autism
Interventions) LEAP (Longitudinal European Autism Project). Individuals were stratified using data-driven
clustering techniques based on the correlation between brain phenotypes and transcriptomic profiles. The
resulting subgroups were characterized on the clinical, neuroanatomical, and molecular levels.

RESULTS: We identified 3 subgroups of autistic individuals based on the correlation between imaging-derived
phenotypes and transcriptomic profiles that showed different clinical phenotypes. The individuals with the
strongest transcriptomic associations with imaging-derived phenotypes showed the lowest level of symptom
severity. The gene sets most characteristic for each subgroup were significantly enriched for genes previously
implicated in autism etiology, including processes such as synaptic transmission and neuronal communication,
and mapped onto different gene ontology categories.

CONCLUSIONS: Autistic individuals can be subgrouped based on the transcriptomic signatures associated with
their neuroanatomical fingerprints, which reveal subgroups that show differences in clinical measures. The study
presents an analytical framework for linking neurodevelopmental and clinical diversity in autism to underlying mo-
lecular mechanisms, thus highlighting the need for personalized support strategies.

https://doi.org/10.1016/j.bpsc.2025.07.001

There is increasing recognition that most neurodevelopmental
conditions are highly heterogeneous at both the mechanistic
and phenotypic levels (1). Therefore, understanding hetero-
geneity is vital for uncovering underlying mechanisms that
could pave the way for targeted, personalized support (2,3).
This applies to autism, a neurodevelopmental condition
characterized by 1) differences in social communication and
interaction, 2) the presence of repetitive and stereotyped be-
haviors, and 3) altered sensory processing (4). These traits
typically emerge during early childhood and are accompanied
by differences in brain anatomy (5). While the neuroanatomy of
autism is highly diverse, imaging transcriptomics studies,
linking brain imaging data to gene expression patterns, sug-
gest that imaging-derived phenotypes (IDPs) in autism may be

linked to molecular pathways implicated in autism etiology
(6,7). This approach enables subgrouping of autistic in-
dividuals on both the neuroanatomical and transcriptomic
levels to identify biologically informed subgroups that may be
linked to underlying mechanisms and therefore inform future
approaches for targeted support.

Previous studies have explored the link between in vivo
neuroanatomy and cortical gene expression signatures in
autism. Romero-Garcia et al. (8) reported that cortical thick-
ness (CT) differences in autistic children are linked to genes
involved in synaptic transmission pathways (9,10). These
findings were replicated and extended in an independent
cohort of children, adolescents, and adults (11). The authors
demonstrated that cortical patterns reflecting differences in
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CT are transcriptomically enriched for genes known to be
involved in autism etiology that map onto synaptic trans-
mission and cell adhesion pathways (11). Different gene
enrichment patterns were observed across clinical autistic
subgroups defined by their sensory profiles (12). This sug-
gests that specific autism phenotypes may have a distinctive
neuroanatomical signature or “fingerprint,” which may relate
to different molecular mechanisms.

To date, however, gene expression decoding, i.e., the anal-
ysis of spatial correlations between imaging and gene expres-
sion signatures, has mostly been restricted to IDPs representing
group-level effects. Due to the high variability within the autistic
population, group-level analyses may overlook individual differ-
ences (13). Therefore, more recent approaches have been
developed to shift the analysis of statistical effects from the
group level to the individual level. This includes normative
modeling approaches, in which each individual is positioned
relative to the neurotypical range of phenotypic diversity in brain
structure (14,15). These studies show that autistic individuals
may be subgrouped based on patterns of neuroanatomical de-
viations, with each subgroup showing different clinical profiles
(16,17). Therefore, the examination of these neuroanatomical
fingerprints rather than group differences may hold the key to
subgrouping autism.

In this study, we used an imaging transcriptomics approach to
subgroup autistic individuals based on the transcriptomic
signature associated with their IDPs, characterized by CT. This
analytical framework facilitates linking neuroanatomical and
clinical diversity in autism to underlying mechanisms. We aimed
to identify subgroups that differed in their neurobiology and
symptomatology and might be linked to putative underlying
mechanisms. Therefore, we examined a large and clinically
diverse cohort of autistic individuals and control individuals
recruited within the EU-AIMS (European Autism Interventions)
LEAP (Longitudinal European Autism Project) (www.aims-2-
trials.eu) (18). This study offers comprehensive phenotypic as-
sessments of more than 700 individuals, including both males
and females ages 6 to 30 years, with varying degrees of autistic
traits (19). Therefore, the LEAP cohort is particularly well suited
for subgrouping purposes. To link IDPs to gene expression
signatures, a spatially dense (i.e., vertex-level) representation of
the Allen Human Brain Atlas (AHBA) was generated character-
izing each gene expression signature across the cortical surface.
This allowed us to assess the spatial correlation between each
brain phenotype and the cortical expression signatures.

Table 1. Participant Demographic Characteristics

Subgrouping Imaging-Derived Phenotypes in Autism

Subsequently, we stratified autistic individuals based on simi-
larities in their IDP-associated transcriptomic profiles and
compared the resulting subgroups on clinical characteristics.
Last, we tested for an enrichment of the gene sets most strongly
associated with the subgroups. This allowed us to 1) link
neuroanatomical variability in autism to specific transcriptomic
correlates and 2) determine the extent to which these correlates
converged within and across subgroups.

METHODS AND MATERIALS

Participants

This study used data provided by the multicentered EU-AIMS
LEAP. A comprehensive description of the sample has been
published elsewhere (18,19). In brief, a total of 359 (101 fe-
male, 258 male) autistic individuals ages 6 to 30 years with
structural magnetic resonance imaging (MRI) data were
included (Table 1). A detailed description of inclusion/exclu-
sion criteria, clinical assessments, and medication status has
been provided elsewhere [see the Supplement and (11)]. In-
dependent ethics committees approved the study, and written
informed consent was obtained for all participants.

MRI Data Acquisition

All participants underwent MRI on 3T scanners located at 6
sites: University of Cambridge, United Kingdom; King’s Col-
lege London, United Kingdom; Central Institute of Mental
Health, Mannheim, Germany; Radboud University Medical
Centre, the Netherlands; University Medical Centre, Utrecht,
the Netherlands; and Rome University, Italy. High-resolution
structural T1-weighted volumetric images were acquired
with full head coverage at 1.2-mm thickness with 1.2 X 1.2
mm? in-plane resolution (see the Supplement).

Cortical Surface Reconstruction Using FreeSurfer

FreeSurfer version 6.0.0 was used to obtain cortical surface
representations for each T1-weighted image of 708 autistic
and non-autistic individuals in the LEAP sample. These fully
automated processes have been described in detail elsewhere
(20,21). All surface reconstructions underwent quality as-
sessments as outlined in Ecker et al. (11). In brief, surface
reconstructions were rated by 3 independent raters, leading to
the inclusion of 638 individuals (359 autistic, 279 nonautistic)
(Table S2). We examined measures of CT, defined as the

Statistics
Total Sample, N = 359 Subgroup 1A, n =75 Subgroup 1B, n = 26 Subgroup 2, n = 258 For %2 p

Age, Years 17.49 (5.52) 17.69 (5.85) 17.42 (5.71) 17.44 (5.42) F, =0.06 94
IQ 98.92 (19.76) 97.71 (19.66) 102.92 (22.7) 98.87 (19.51) F, = 0.67 51
Mean CT, mm 2.28 (0.13) 2.66 (0.12) 2.72 (0.16) 2.68 (0.13) F»=1.88 16
Sex

Female 101 (28.1%) 25 (33.3%) 2 (7.7%) 74 (28.7%) ¥2%2 = 6.41 .04

Male 258 (71.9%) 50 (66.7%) 24 (92.3%) 184 (71.3%)
Site - - - - %20 = 8.25 .6

Values are presented as mean (SD) or n (%).
CT, cortical thickness.
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shortest distance from the outer to the inner boundary at each
vertex (22), smoothed using a 15-mm kernel to enhance the
signal-to-noise ratio and be consistent with previous research
(11,23,24). For each participant, we also computed the
average CT across the cortex (CTy).

To make individuals comparable, IDPs were standard-
ized within the neurotypical range of control participants by
means of a general linear model (GLM) that included both
linear and quadratic age, sex, full scale 1Q (FSIQ), acqui-
sition site, and CT, as predictors (X). The model co-
efficients (Brp) were subsequently used to predict CT
across the cortex for all individuals in our cohort (Y =
XBrp). The resulting residuals (res = Y — Y) were centered
and scaled based on the neurotypical CT distribution, thus
expressing all data in unit standard deviations of the pre-
dicted neurotypical mean (z,es). Thus, instead of using
absolute CT metrics, all datasets were normalized to unit
standard deviations relative to the canonical trajectory
(Figure 1, step 1).

Transcriptomic Decoding of IDPs

To link IDPs to gene expression patterns, we initially gener-
ated a spatially dense (i.e., vertex-level) representation of the
AHBA human brain transcriptome as described by Grygle-
weski et al. (25). The AHBA data was quality assessed using
the abagen toolbox (26) and mapped onto the FreeSurfer
fsaverage6 template. Messenger RNA expression values for
vertices without AHBA representation were predicted via
spatial interpolation using Gaussian process regression (i.e.,
ordinary Kriging). To account for the complex pattern of
cortical folding, spatial interpolation was performed based
on existing AHBA samples located within a geodesic neigh-
borhood of 40 mm (see Transcriptomic Alignment Between
Imaging Phenotypes and Gene Expression Patterns in
Supplemental Methods for details). This resulted in spatially
smooth gene expression maps for >15,600 genes measured
in cortical brain tissue. Subsequently, we assessed the
spatial correlations between each of the 359 standardized
IDPs and the expression profiles of 15,633 genes (Figure 1,
step 2).

The statistical assessment of spatial correlations was
conducted within the framework of spatial-autocorrelation
() preserving null modeling (27), using the variogram
matching approach developed by Burt et al. (28). Given the
high computational demands of this approach, we used
principal component analysis to decompose the matrix of
normalized gene expression maps into a set of 9 coex-
pression gradients with eigenvalues >1, which captured
41% of the total variability in gene expression across the
cortex. For each gradient, a total of 1000 a-preserving null
models were then precomputed to characterize the empir-
ical distribution of spatial correlations under the null hy-
pothesis, following knn-parameter optimization (28). This
allowed us to derive a nonparametric a-corrected p value
estimate for each gene based on the null distribution of
spatial correlations with its respective gradient pattern.
Gene-level p values were subsequently adjusted for multiple
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comparisons using the empirical cumulative density function
of the extreme value distribution of spatial correlations
across gradient nulls (29) (see Transcriptomic Decoding of
Surface-Based IDPs in Supplemental Methods for details)
(Figure 1, step 3).

Clustering of IDPs Based on Transcriptomic
Profiles

The matrix of absolute spatial correlations between IDPs
and cortical gene expression patterns (359 IDPs X 15,633
genes) served as input to a k-means clustering algorithm
to identify subgroups of participants (and genes) with a
similar IDP-related transcriptomic profile. Here, the optimal
number of clusters was identified using the R package
NbClust (version 3.0.1) using the complete aggregation
method, which evaluates clustering solutions for different
numbers of clusters across multiple validity indices [see
the Supplement and (30)]. The stability of the clusters was
assessed using the clusterboot function implemented in
the R package fpc (version 2.2.9) (31), which performs
bootstrap resampling of the data and evaluates the sta-
bility of each cluster by calculating Jaccard coefficients
that represent the similarity between original clustering and
bootstrapped clustering, with a Jaccard similarity value of
>0.75 generally indicating a stable clustering solution (32)
(Figure 1, step 4).

Subgroup Differences in Clinical Measures

For further characterization of the subgroups with regard
to the clinical measures, we used analyses of covariance
and post hoc t tests to compare clinical measures be-
tween subgroups. We covaried for age, 1Q, site, and
biological sex to assess subgroup differences indepen-
dent of demographic factors. All subgroup differences
between clinical measures were corrected for multiple
comparisons using Bonferroni correction (33). Autistic
traits were assessed using the Autism Diagnostic Obser-
vation Schedule (34), Autism Diagnostic Interview-Revised
(ADI-R) (35), Repetitive Behavior Scale-Revised (RBS-R)
(36), Social Responsiveness Scale, Second Edition (37),
and the Short Sensory Profile (SSP) (38). Co-occurring
attention-deficit/hyperactivity =~ disorder  (ADHD)  was
assessed using the parent- and self-reported DSM-5-
based ADHD Rating Scale (4). The Beck Anxiety In-
ventory (39) adult and youth self-report versions were
used to assess levels of anxiety. The Beck Depression
Inventory-Il adult and youth self-report versions were used
(40,41) to assess the severity of depressive symptoms
(Figure 1, step 5). For all clinical scales, missing data were
imputed wherever possible to achieve a maximum sample
size [see (42) for details].

Surface-Based Statistical Analyses of CT

The vertex-level statistical analyses were conducted using the
SurfStat toolbox for MATLAB (version R2021a; The Math-
Works, Inc.) and R (43). Vertexwise between-subgroup dif-
ferences in CT (Y) were examined with a GLM incorporating
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Figure 1. Schematic overview of the analytical framework. (A) Schematic overview of the background of the study. (B) Schematic overview of the methods
of the study consisting of transcriptomic alignment between standardized IDPs (step 1) and gene expression data provided by the AHBA (step 2) via spatial
correlation (step 3) and clustering of IDPs based on similarities in transcriptomic associations (step 4), with subsequent clinical and molecular characterization
(step 5). AHBA, Allen Human Brain Atlas; GO, gene ontology; IDP, imaging-derived phenotype; MRI, magnetic resonance imaging; mRNA, messenger RNA.

subgroup, sex, and acquisition site as fixed effect factors and
age, quadratic age, FSIQ, and CTg as continuous covariates,
while g; is the residual error at vertex i.

Yi =B, + BiSubgroup + B,Sex + BsAge + B,Age? + BsFSIQ
+ BgSite + B,CT + ¢
(1

Between-subgroup differences were estimated from the
coefficient B, normalized by the standard error. All
continuous covariates were mean centered. Corrections
for multiple comparisons were performed using random
field theory-based cluster analysis for nonisotropic
images with a cluster-based significance threshold of .05
(2 tailed) (44).
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Molecular Characterization of Subgroups Using
Gene-Set Enrichment Analysis

To link subgroups to mechanisms, gene-set enrichment an-
alyses were performed to annotate each subgroup based on
the gene sets most representative of each subgroup. There-
fore, we used the gene sets with the highest average corre-
lations obtained through clustering. These subsets contained
the most significant genes based on the absolute correlations,
thresholded at pagjustes < -01. Initially, we tested these gene
sets for enrichment of genes known to be involved in the
etiology of autism including genes with rare and de novo
variants (45), differentially expressed genes (DEGs) (46), and
coexpression modules that mediate typical brain development
in autism (47). Additionally, we tested for an enrichment of
gene ontology (GO) terms. For details about the gene-set
enrichment analyses, see Molecular Characterization of
Subgroups Using Gene Enrichment Analysis in Supplemental
Methods.

RESULTS

Subgrouping of IDPs Based on Similarities in
Transcriptomic Signatures

Gene expression decoding of standardized IDPs resulted in a
participant X gene (359 X 15,633) matrix of spatial correla-
tions (Figure 2A) representing the absolute strength of the
transcriptomic associations between IDPs and cortically
expressed genes and was subsequently utilized for data-
driven, unsupervised k-means clustering. We discerned an
optimal bifurcated clustering solution with a mean boot-
strapped Jaccard similarity index of 0.95 and 0.98, subdivid-
ing participants into two subgroups: one group of individuals
(subgroup 1) with an average moderate degree of tran-
scriptomic associations (n = 101; 27 female and 72 male;
mean absolute repatial = 0.13) and one group (subgroup 2) with
a low average degree of transcriptomic correlations (n = 258;
74 female and 184 male; Fgpatial = 0.07) (Figure 2A). Clustering
across genes revealed 4 gene sets (gene sets 1-4), with
Jaccard indices of 0.96, 0.95, 0.93, and 0.95, respectively.
To further investigate the putative underlying mechanisms
in individuals with a moderate degree of transcriptomic cor-
relations, a second-level clustering was performed across
subgroup 1, delineating 2 subgroups, subgroup 1A (n = 75; 25
female and 50 male) and subgroup 1B (n = 26, 2 female and 24

A Unsupervised clustering of IDPs |
'

Gene set 1 Gene set 2 Gene set3

Gene set 4

v
Subgroup 2
==
==
===
Subgroup 2

%@ 1
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male), with a mean bootstrapped Jaccard similarity index of
0.96 and 0.99, respectively. Each of the 3 subgroups was
linked to gene sets, i.e., subgroup 1A showed low to moderate
transcriptomic associations with gene set 1 (Fspatias = 0.16)
(Figure 2A). Individuals in subgroup 1B exhibited the highest
spatial correlations with genes in gene set 1 (Fspatias = 0.26) and
gene set 4 (Fspatial = 0.18) (Figure 2A). In contrast, individuals
in subgroup 2 exhibited low correlations across all 4 gene sets
(Figure 2A). There were no subgroup differences in age (F» =
0.06, p = .94), FSIQ (F, = 0.67, p = .51), or mean CT (F, = 1.88,
p = .16). However, the male-to-female ratio was significantly
lower in subgroup 1B (x% = 6.41, p = .04) (Table 1). Therefore,
we covaried for these measures (age, FSIQ, sex, site, and
mean CT) in all subsequent analyses. Overall, we found 3
participant subgroups that were differentially associated with
the 4 gene sets.

Subgroup Differences in Clinical Phenotypes

Next, we examined differences in clinical measures between
subgroups. There was a significant main effect of subgroup on
the communication domain of the ADI-R (F = 3.9, p = .03) and
on the RBS-R (F = 3.14, p = .04) (Figure 3A). Individuals in
subgroup 1B had lower symptom scores compared with in-
dividuals in subgroup 1A or 2. There were significant subgroup
differences in sensory symptoms, particularly on the taste
subscale of the SSP (F = 4.22, p = .02) (Figure 3B). Thus, in-
dividuals in subgroup 1B, who exhibited the strongest tran-
scriptomic associations, showed significantly lower symptom
scores than individuals in other subgroups, confirmed by post
hoc t tests (Figure 3F). However, there were no significant
differences in co-occurring symptoms or other autistic traits
(Table S4).

Neuroanatomical Differences Between Subgroups

Subgroups also differed significantly in CT. There was a sig-
nificant main effect of subgroup in the left temporal pole
(approximately Brodmann area [BA] 36/38) (Figure S4).
Furthermore, individuals in subgroup 1A had significantly
increased CT in the left isthmus cingulate cortex and the left
posterior cingulate cortex (BA 23/24) compared with in-
dividuals in subgroups 1B and 2. Additionally, individuals in
subgroup 1A showed significantly increased CT in the right
middle frontal gyrus (BA 9/44/45) and decreased CT in the left
posterior cingulate cortex (BA 23/31), the left temporal pole

Figure 2. Subgrouping results. (A) Heatmap of
absolute spatial correlations (rspatial) between each
standardized IDP and the cortical expression
signatures of 15,633 protein-coding genes. Sub-
fields result from a 2-step clustering solution (k-
means) that initially subdivided participants into a
group with medium to high transcriptomic asso-
ciations (subgroup 1) and a group with low to
medium transcriptomic associations (subgroup 2).
Second-level clustering further subdivided in-
dividuals in subgroup 1 into subgroup 1A and
subgroup 1B, with differential transcriptomic as-
sociations with gene set 1 and gene set 4,
respectively. (B) Average standardized IDPs

B Mean subgroup IDPs

mean subgroup IDP,

B,

mean IDP,

g

within subgroups (IDP,). z indicates normalized deviations from the typical developmental trajectory of cortical thickness. IDP, imaging-derived

phenotype.
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ADOS, and SSP. Note. For all clinical scales, significant differences are marked by an asterisk (*), based on p < .05. (B) Subgroup scores on the SSP. (C)
Differences in co-occurring traits measured using the ADHD Rating Scale, BAI, BYI-II, BDI-II, and BDI-Y. (D) Subgroup differences in the RBS-R, using a post
hoc t test. (E) Subgroup differences in the communication domain of the ADI-R, using a post hoc t test. (F) Significant subgroup differences on the taste item
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(BA 36/38), and the right isthmus cingulate cortex (BA 24)
compared with individuals in subgroup 2 (Figure 3F-H and
Table S3).

Molecular Characterization of Subgroups

We tested the gene sets with the highest absolute tran-
scriptomic associations with the subgroups using gene-set
enrichment analysis. The 3 resulting subsets consisted of
significant genes only (Dagjusted < .01). Gene subset A con-
tained 1221 genes significantly associated with subgroup 1A.
Gene subsets B and C were associated with subgroup 1B and
consisted of 1340 and 65 genes, respectively (Figure 4A). Of
these subsets, only subsets A and B were significantly
enriched for autism candidate genes and DEGs in autism
(Figure 4B). Gene subset A was significantly enriched for up-
and downregulated genes in autism that have previously been
associated with GO terms that represent synaptic functioning
and neuronal signals (9,46). Gene subset B was enriched for
DEGs linked to synaptic functioning and transmembrane ac-
tivity and for SFARI (Simons Foundation Autism Research
Initiative) autism genes (46) (Figure 4B).

Next, we tested the enrichment of genes in coexpression
modules that mediate typical brain development (47). Notably,
all gene subsets showed a significant enrichment for coex-
pression module M2, associated with synaptic transmission,
which exhibits peak expression during early childhood and
adolescence (Figure 4C). The same applies to synaptic
transmission module M15, which was significantly enriched in
gene subsets A and B. We observed a significant enrichment
of module M20, which is linked to zing-finger proteins and
transcription factors (TFs) (47). Unlike synaptic modules,
coexpression modules representing TFs exhibit peak
expression during prenatal brain development and show the
lowest expression levels during childhood (Figure 4D). Lastly,
in gene subset B linked to subgroup 1B, we observed an
enrichment of modules M8 (neuronal development TFs) and
M16 (cell adhesion signaling), with peak expression during the
prenatal stage and during childhood/adolescence. Overall,
IDPs in autism converge onto the coexpression signatures of
specific transcriptional programs that impact brain develop-
ment at different developmental stages.

Lastly, we annotated subgroup 1A and subgroup 1B by
testing for an enrichment of general GO terms. Therefore, we
extracted the genes from gene subset A that were exclusively
associated with subgroup 1A (gene subset 1A,,) and subset
B genes that were only associated with subgroup 1B (gene
subset 1Bgny). This resulted in 657 genes for gene subset
1Aqny and 776 genes for gene subset 1B,,,,. The subgroups
differed in terms of enrichment profiles, with subset 1A,y
showing a stronger enrichment of biological processes and
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gene subset 1B,y showing a stronger enrichment of cellular
component terms (Figure 4E, F and Table S7).

DISCUSSION

In this study, we used an imaging transcriptomics approach to
dissect autism heterogeneity based on the transcriptomic
signatures associated with individual IDPs. Additionally, the
derived subgroups were characterized in terms of clinical,
neuroanatomical, and molecular measures. We established
that 1) subgroups differed on the clinical, neuroanatomical,
and molecular levels and that 2) subgroups converged onto
different putative molecular mechanisms. These findings
highlight mechanistic and phenotypic differences between
subgroups of autistic individuals, providing a framework to
further elucidate the variability within autism.

Within this framework, we initially transcriptomically deco-
ded the structural IDPs from 359 autistic individuals, using
spatially dense representations of the AHBA transcriptome.
The individual’s neurophenotypes were characterized based
on measures of CT, a morphometric feature known to be
influenced by both genetic variation and differences in gene
expression (48,49). Differences in CT in autism are well
documented and have been linked to its molecular etiology
(8,11). Our study indicates that the transcriptomic profiles
associated with IDPs in autism vary across individuals. This
finding is consistent with previous reports suggesting that
each person’s neuroanatomy is marked by individualized
patterns of neuroanatomical deviations from the typical tra-
jectory of brain development, i.e., a neuroanatomical finger-
print (16). Thus, rather than analyzing absolute measures of
CT, we standardized IDPs within the neurotypical range prior
to decoding using an age- and sex-matched sample of control
participants recruited at the same acquisition sites. This
standardization of IDPs is an important step, as it makes it
possible to perform comparative analyses across demo-
graphically diverse phenotypes and focus on interindividual
differences rather than on group mean differences. This
approach allows accounting for interindividual variability due
to demographic and technical confounds. It thus places all
data within the broader context of neurodiversity (50) and is
consistent with previous approaches (14,15,51) emphasizing
the conceptual relevance of elucidating neurodiversity in
autism. This approach is particularly well suited for sub-
grouping purposes.

Using unsupervised clustering approaches, we subdivided
individuals based on similarities in their IDP-related tran-
scriptomic profiles. We discerned 3 subgroups that were
differentially associated with 4 different gene sets. The
strongest transcriptomic associations were observed in in-
dividuals within subgroup 1B. Most individuals exhibited small
spatial associations between IDPs and gene expression

of the SSP, using a post hoc t test. (G) Subgroup differences in CT between subgroup 1A and subgroup 1B. (H) Subgroup differences in CT between
subgroup 1A and subgroup 2. (I) Subgroup differences in CT between subgroup 1B and subgroup 2. For all surface-based statistical patterns, the upper
panels show the t test statistic (unthresholded) associated with each subgroup contrast. The lower panels indicate clusters with significantly increased
(orange) and decreased (blue) CT for the respective subgroup comparison (random field theory—-based cluster-corrected p < .05, 2 tailed). ADI-R, Autism
Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation Schedule; BAI, Beck Anxiety Inventory; BDI-Il, Beck Depression Inventory-II; BDI-Y,
Beck Depression Inventory for Youth; BYI-Il, Beck Anxiety Inventory for Youth-Il; CT, cortical thickness; L, left hemisphere; R, right hemisphere; RBS-R,
Repetitive Behavior Scale-Revised; SRS, Social Responsiveness Scale; SSP, Short Sensory Profile.
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Figure 4. Gene-set enrichment analysis. (A) Average absolute spatial correlations (Fisher’s z transformed) within subgroups, resulting in 3 gene subsets
labeled A (yellow), B (green), and C (red). (B) Odds ratios at a false discovery rate-corrected pagjusted threshold of .01 resulting from the gene-set enrichment
analyses for genes expressed in gene subsets A, B, and C, respectively. Gene sets were subdivided into sets with differential gene expression in autism and
sets representing autism likelihood genes. Gene sets are annotated and labeled based on their original publication. (C) Enrichment of genes mediating typical
brain development as reported in the spatiotemporal transcriptome dataset provided by Kang et al. (47). Set names contain their respective coexpression
module label (e.g., M1) followed by their functional description based on their GO term enrichment. (D) Spatiotemporal expression profiles of brain gene
modules that were significantly enriched in the gene subsets for module 2 (synaptic transmission) and module 20 (ZNFSOX transcription factor). The x-axis
shows the developmental time frame (pcw), and the y-axis shows the different brain regions. (E) Venn diagram showing the number of shared and distinct
genes from subsets A and B, resulting in gene subset 1A, (significantly associated with subgroup 1A exclusively) and gene subset 1B, (significantly
associated with subgroup 1B exclusively) (left). The middle and right panels indicate the functional enrichment of GO terms for gene subset 1A, and gene
subset 1B,ny, respectively. Up and down indicate upregulated and downregulated expression in autism, respectively. Summary statistics and details for all
enriched terms are listed in Tables S6 and S7. A1C, primary auditory cortex; AMY, amygdala; ASD, autism spectrum disorder; BP, biological process; CBC,
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signatures, as was characteristic of subgroup 2. Therefore,
autistic individuals differ in both the magnitude and nature of
the transcriptomic associations, further substantiating the
growing evidence of significant heterogeneity in autism on the
phenotypic and mechanistic level (13,52). These differences
cannot be accounted for by variations in participant de-
mographic characteristics such as age and IQ. However, there
was a significant difference in the male-to-female ratio, with a
higher proportion of males in subgroup 1B. Therefore, we
controlled for biological sex to reduce potential demographic
confounding and observed that participants in subgroup 1B
exhibited lower levels of symptom severity in social commu-
nication, repetitive behaviors, and sensory symptoms but not
in co-occurring symptoms (e.g., anxiety, depression, ADHD).
Previous research suggests that sex differences are a factor
that contributes to the heterogeneity in autism (53). Thus, our
findings need to be interpreted in this context (54), and future
research on the interaction between sex, transcriptomic pro-
files, and clinical measures is needed. Our findings suggest
that autistic individuals with a higher association with gene
expression patterns exhibit less severe symptoms overall. This
may be because typical brain development is governed by
various transcriptional programs—temporally and spatially
coordinated patterns of gene expression guiding the formation
of the nervous system, i.e., processes such as neurogenesis,
axon guidance, and synapse formation (47). Therefore,
changes in these programs are likely to impact the formation
of the brain’s neurocircuitry and have been implicated in the
etiology of autism through genetic and transcriptomic in-
vestigations (46,55).

Coexpression networks were also implicated by our study.
We found that the IDPs of individuals in subgroup 1 (i.e., the
subgroup with the highest transcriptomic associations) were
significantly associated with the gene expression signatures of
genes previously reported to be up- and downregulated in the
autism cortex (9,46). These included module CTX.M20, which
contains genes implicated in the development and regulation
of cell differentiation (9). Moreover, we found an enrichment of
the gene coexpression modules that mediate typical brain
development (47). This includes modules M2 and M15, which
map onto synaptic transmission pathways, as well as modules
M8 and M20, which are enriched for GO categories related to
TFs (9). Notably, M2 and M20 follow opposite developmental
trajectories across brain regions, with M20 being most active
during prenatal brain development and M2 being most
expressed during childhood. Taken together, our results
suggest that different coexpression networks influence brain
maturation across developmental states in a region-specific
manner and that autistic individuals with neuroanatomical
characteristics, spatially more closely aligned with these large-
scale transcriptomic gradients, may exhibit greater resilience.

Our study’s strengths include the combination of imaging
and transcriptomics data; the large, heterogeneous, and
deep-phenotyped dataset; and our analytical framework for
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parsing autism heterogeneity. However, there are limitations
to this study. So far, we have not examined genomic variation
that could underpin differential gene expression. Thus, it re-
mains to be established how genetic variation influences gene
expression in autism. We utilized the AHBA (56) data, which is
the most comprehensive gene expression atlas to date.
Nevertheless, the AHBA is based on adult donors, while we
examined IDPs of children, adolescents, and adults. There-
fore, we acknowledge the importance of repeating our ana-
lyses in age-matched samples to corroborate the relationship
between genetic variation, gene expression, and neuro-
diversity in autism.

Conclusions

We identified subgroups within a sample of autistic partici-
pants based on the link between brain phenotypes and gene
expression profiles. These subgroups showed differences in
clinical measures and neuroanatomy. They also varied in their
underlying genetic profiles, highlighting the biological hetero-
geneity in autism and therefore the need to develop more
targeted support strategies.
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