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ABSTRACT
BACKGROUND: Neurodevelopmental conditions, such as autism, are highly heterogeneous at both the mechanistic 
and phenotypic levels. Therefore, parsing heterogeneity is vital for uncovering underlying processes that could 
inform the development of targeted, personalized support. We aimed to parse heterogeneity in autism by identifying 
subgroups that converge at both the phenotypic and molecular levels.
METHODS: An imaging transcriptomics approach was used to link neuroanatomical imaging-derived phenotypes in 
autism to whole-brain gene expression signatures provided by the Allen Human Brain Atlas. Neuroimaging and 
clinical data of 359 autistic participants ages 6 to 30 years were provided by EU-AIMS (European Autism 
Interventions) LEAP (Longitudinal European Autism Project). Individuals were stratified using data-driven 
clustering techniques based on the correlation between brain phenotypes and transcriptomic profiles. The 
resulting subgroups were characterized on the clinical, neuroanatomical, and molecular levels.
RESULTS: We identified 3 subgroups of autistic individuals based on the correlation between imaging-derived 
phenotypes and transcriptomic profiles that showed different clinical phenotypes. The individuals with the 
strongest transcriptomic associations with imaging-derived phenotypes showed the lowest level of symptom 
severity. The gene sets most characteristic for each subgroup were significantly enriched for genes previously 
implicated in autism etiology, including processes such as synaptic transmission and neuronal communication, 
and mapped onto different gene ontology categories.
CONCLUSIONS: Autistic individuals can be subgrouped based on the transcriptomic signatures associated with 
their neuroanatomical fingerprints, which reveal subgroups that show differences in clinical measures. The study 
presents an analytical framework for linking neurodevelopmental and clinical diversity in autism to underlying mo-
lecular mechanisms, thus highlighting the need for personalized support strategies.

https://doi.org/10.1016/j.bpsc.2025.07.001

There is increasing recognition that most neurodevelopmental 
conditions are highly heterogeneous at both the mechanistic 
and phenotypic levels (1). Therefore, understanding hetero-
geneity is vital for uncovering underlying mechanisms that 
could pave the way for targeted, personalized support (2,3). 
This applies to autism, a neurodevelopmental condition 
characterized by 1) differences in social communication and 
interaction, 2) the presence of repetitive and stereotyped be-
haviors, and 3) altered sensory processing (4). These traits 
typically emerge during early childhood and are accompanied 
by differences in brain anatomy (5). While the neuroanatomy of 
autism is highly diverse, imaging transcriptomics studies, 
linking brain imaging data to gene expression patterns, sug-
gest that imaging-derived phenotypes (IDPs) in autism may be

linked to molecular pathways implicated in autism etiology 
(6,7). This approach enables subgrouping of autistic in-
dividuals on both the neuroanatomical and transcriptomic 
levels to identify biologically informed subgroups that may be 
linked to underlying mechanisms and therefore inform future 
approaches for targeted support.
Previous studies have explored the link between in vivo 

neuroanatomy and cortical gene expression signatures in 
autism. Romero-Garcia et al. (8) reported that cortical thick-
ness (CT) differences in autistic children are linked to genes 
involved in synaptic transmission pathways (9,10). These 
findings were replicated and extended in an independent 
cohort of children, adolescents, and adults (11). The authors 
demonstrated that cortical patterns reflecting differences in
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CT are transcriptomically enriched for genes known to be 
involved in autism etiology that map onto synaptic trans-
mission and cell adhesion pathways (11). Different gene 
enrichment patterns were observed across clinical autistic 
subgroups defined by their sensory profiles (12). This sug-
gests that specific autism phenotypes may have a distinctive 
neuroanatomical signature or “fingerprint,” which may relate 
to different molecular mechanisms.
To date, however, gene expression decoding, i.e., the anal-

ysis of spatial correlations between imaging and gene expres-
sion signatures, has mostly been restricted to IDPs representing 
group-level effects. Due to the high variability within the autistic 
population, group-level analyses may overlook individual differ-
ences (13). Therefore, more recent approaches have been 
developed to shift the analysis of statistical effects from the 
group level to the individual level. This includes normative 
modeling approaches, in which each individual is positioned 
relative to the neurotypical range of phenotypic diversity in brain 
structure (14,15). These studies show that autistic individuals 
may be subgrouped based on patterns of neuroanatomical de-
viations, with each subgroup showing different clinical profiles 
(16,17). Therefore, the examination of these neuroanatomical 
fingerprints rather than group differences may hold the key to 
subgrouping autism.
In this study, we used an imaging transcriptomics approach to 

subgroup autistic individuals based on the transcriptomic 
signature associated with their IDPs, characterized by CT. This 
analytical framework facilitates linking neuroanatomical and 
clinical diversity in autism to underlying mechanisms. We aimed 
to identify subgroups that differed in their neurobiology and 
symptomatology and might be linked to putative underlying 
mechanisms. Therefore, we examined a large and clinically 
diverse cohort of autistic individuals and control individuals 
recruited within the EU-AIMS (European Autism Interventions) 
LEAP (Longitudinal European Autism Project) (www.aims-2-
trials.eu) (18). This study offers comprehensive phenotypic as-
sessments of more than 700 individuals, including both males 
and females ages 6 to 30 years, with varying degrees of autistic 
traits (19). Therefore, the LEAP cohort is particularly well suited 
for subgrouping purposes. To link IDPs to gene expression 
signatures, a spatially dense (i.e., vertex-level) representation of 
the Allen Human Brain Atlas (AHBA) was generated character-
izing each gene expression signature across the cortical surface. 
This allowed us to assess the spatial correlation between each 
brain phenotype and the cortical expression signatures.

Subsequently, we stratified autistic individuals based on simi-
larities in their IDP-associated transcriptomic profiles and 
compared the resulting subgroups on clinical characteristics. 
Last, we tested for an enrichment of the gene sets most strongly 
associated with the subgroups. This allowed us to 1) link 
neuroanatomical variability in autism to specific transcriptomic 
correlates and 2) determine the extent to which these correlates 
converged within and across subgroups.

METHODS AND MATERIALS 

Participants

This study used data provided by the multicentered EU-AIMS 
LEAP. A comprehensive description of the sample has been 
published elsewhere (18,19). In brief, a total of 359 (101 fe-
male, 258 male) autistic individuals ages 6 to 30 years with 
structural magnetic resonance imaging (MRI) data were 
included (Table 1). A detailed description of inclusion/exclu-
sion criteria, clinical assessments, and medication status has 
been provided elsewhere [see the Supplement and (11)]. In-
dependent ethics committees approved the study, and written 
informed consent was obtained for all participants.

MRI Data Acquisition

All participants underwent MRI on 3T scanners located at 6 
sites: University of Cambridge, United Kingdom; King’s Col-
lege London, United Kingdom; Central Institute of Mental 
Health, Mannheim, Germany; Radboud University Medical 
Centre, the Netherlands; University Medical Centre, Utrecht, 
the Netherlands; and Rome University, Italy. High-resolution 
structural T1-weighted volumetric images were acquired 
with full head coverage at 1.2-mm thickness with 1.2 3 1.2 
mm 2 in-plane resolution (see the Supplement).

Cortical Surface Reconstruction Using FreeSurfer

FreeSurfer version 6.0.0 was used to obtain cortical surface 
representations for each T1-weighted image of 708 autistic 
and non-autistic individuals in the LEAP sample. These fully 
automated processes have been described in detail elsewhere 
(20,21). All surface reconstructions underwent quality as-
sessments as outlined in Ecker et al. (11). In brief, surface 
reconstructions were rated by 3 independent raters, leading to 
the inclusion of 638 individuals (359 autistic, 279 nonautistic) 
(Table S2). We examined measures of CT, defined as the

Table 1. Participant Demographic Characteristics

Total Sample, N = 359 Subgroup 1A, n = 75 Subgroup 1B, n = 26 Subgroup 2, n = 258

Statistics

F or χ 2 p

Age, Years 17.49 (5.52) 17.69 (5.85) 17.42 (5.71) 17.44 (5.42) F 2 = 0.06 .94

IQ 98.92 (19.76) 97.71 (19.66) 102.92 (22.7) 98.87 (19.51) F 2 = 0.67 .51

Mean CT, mm 2.28 (0.13) 2.66 (0.12) 2.72 (0.16) 2.68 (0.13) F 2 = 1.88 .16

Sex

Female 101 (28.1%) 25 (33.3%) 2 (7.7%) 74 (28.7%) χ 2 2 = 6.41 .04

Male 258 (71.9%) 50 (66.7%) 24 (92.3%) 184 (71.3%)

Site – – – – χ 2 10 = 8.25 .6

Values are presented as mean (SD) or n (%). 
CT, cortical thickness.
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shortest distance from the outer to the inner boundary at each 
vertex (22), smoothed using a 15-mm kernel to enhance the 
signal-to-noise ratio and be consistent with previous research 
(11,23,24). For each participant, we also computed the 
average CT across the cortex (CT 0 ).
To make individuals comparable, IDPs were standard-

ized within the neurotypical range of control participants by 
means of a general linear model (GLM) that included both 
linear and quadratic age, sex, full scale IQ (FSIQ), acqui-
sition site, and CT 0 as predictors (X). The model co-
efficients (β TD ) were subsequently used to predict CT 
across the cortex for all individuals in our cohort ( ̂  Y =
Xβ TD ). The resulting residuals (res = Y 2 Ŷ) were centered
and scaled based on the neurotypical CT distribution, thus 
expressing all data in unit standard deviations of the pre-
dicted neurotypical mean (z res ). Thus, instead of using 
absolute CT metrics, all datasets were normalized to unit 
standard deviations relative to the canonical trajectory 
(Figure 1, step 1).

Transcriptomic Decoding of IDPs

To link IDPs to gene expression patterns, we initially gener-
ated a spatially dense (i.e., vertex-level) representation of the 
AHBA human brain transcriptome as described by Grygle-
weski et al. (25). The AHBA data was quality assessed using 
the abagen toolbox (26) and mapped onto the FreeSurfer 
fsaverage6 template. Messenger RNA expression values for 
vertices without AHBA representation were predicted via 
spatial interpolation using Gaussian process regression (i.e., 
ordinary Kriging). To account for the complex pattern of 
cortical folding, spatial interpolation was performed based 
on existing AHBA samples located within a geodesic neigh-
borhood of 40 mm (see Transcriptomic Alignment Between 
Imaging Phenotypes and Gene Expression Patterns in 
Supplemental Methods for details). This resulted in spatially 
smooth gene expression maps for .15,600 genes measured 
in cortical brain tissue. Subsequently, we assessed the 
spatial correlations between each of the 359 standardized 
IDPs and the expression profiles of 15,633 genes (Figure 1, 
step 2).
The statistical assessment of spatial correlations was 

conducted within the framework of spatial-autocorrelation 
(α) preserving null modeling (27), using the variogram 
matching approach developed by Burt et al. (28). Given the 
high computational demands of this approach, we used 
principal component analysis to decompose the matrix of 
normalized gene expression maps into a set of 9 coex-
pression gradients with eigenvalues .1, which captured 
41% of the total variability in gene expression across the 
cortex. For each gradient, a total of 1000 α-preserving null 
models were then precomputed to characterize the empir-
ical distribution of spatial correlations under the null hy-
pothesis, following knn-parameter optimization (28). This 
allowed us to derive a nonparametric α-corrected p value 
estimate for each gene based on the null distribution of 
spatial correlations with its respective gradient pattern. 
Gene-level p values were subsequently adjusted for multiple

comparisons using the empirical cumulative density function 
of the extreme value distribution of spatial correlations 
across gradient nulls (29) (see Transcriptomic Decoding of 
Surface-Based IDPs in Supplemental Methods for details) 
(Figure 1, step 3).

Clustering of IDPs Based on Transcriptomic 
Profiles

The matrix of absolute spatial correlations between IDPs 
and cortical gene expression patterns (359 IDPs 3 15,633
genes) served as input to a k-means clustering algorithm
to identify subgroups of participants (and genes) with a
similar IDP-related transcriptomic profile. Here, the optimal 
number of clusters was identified using the R package 
NbClust (version 3.0.1) using the complete aggregation 
method, which evaluates clustering solutions for different 
numbers of clusters across multiple validity indices [see 
the Supplement and (30)]. The stability of the clusters was 
assessed using the clusterboot function implemented in 
the R package fpc (version 2.2.9) (31), which performs 
bootstrap resampling of the data and evaluates the sta-
bility of each cluster by calculating Jaccard coefficients 
that represent the similarity between original clustering and 
bootstrapped clustering, with a Jaccard similarity value of 
.0.75 generally indicating a stable clustering solution (32) 
(Figure 1, step 4).

Subgroup Differences in Clinical Measures

For further characterization of the subgroups with regard 
to the clinical measures, we used analyses of covariance 
and post hoc t tests to compare clinical measures be-
tween subgroups. We covaried for age, IQ, site, and 
biological sex to assess subgroup differences indepen-
dent of demographic factors. All subgroup differences 
between clinical measures were corrected for multiple 
comparisons using Bonferroni correction (33). Autistic 
traits were assessed using the Autism Diagnostic Obser-
vation Schedule (34), Autism Diagnostic Interview-Revised 
(ADI-R) (35), Repetitive Behavior Scale-Revised (RBS-R) 
(36), Social Responsiveness Scale, Second Edition (37), 
and the Short Sensory Profile (SSP) (38). Co-occurring 
attention-deficit/hyperactivity disorder (ADHD) was 
assessed using the parent- and self-reported DSM-5– 
based ADHD Rating Scale (4). The Beck Anxiety In-
ventory (39) adult and youth self-report versions were 
used to assess levels of anxiety. The Beck Depression 
Inventory-II adult and youth self-report versions were used 
(40,41) to assess the severity of depressive symptoms 
(Figure 1, step 5). For all clinical scales, missing data were 
imputed wherever possible to achieve a maximum sample 
size [see (42) for details].

Surface-Based Statistical Analyses of CT

The vertex-level statistical analyses were conducted using the 
SurfStat toolbox for MATLAB (version R2021a; The Math-
Works, Inc.) and R (43). Vertexwise between-subgroup dif-
ferences in CT (Y) were examined with a GLM incorporating
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subgroup, sex, and acquisition site as fixed effect factors and 
age, quadratic age, FSIQ, and CT 0 as continuous covariates, 
while ε i is the residual error at vertex i.

Y i = β 0 1 β 1 Subgroup 1 β 2 Sex 1 β 3 Age 1 β 4 Age 
2 

1 β 5 FSIQ

1 β 6 Site 1 β 7 CT 1 ε i
(1)

Between-subgroup differences were estimated from the 
coefficient β 

1 , normalized by the standard error. All 
continuous covariates were mean centered. Corrections 
for multiple comparisons were performed using random 
field theory–based cluster analysis for nonisotropic 
images with a cluster-based significance threshold of .05 
(2 tailed) (44).

Molecular 
profile

Neuro-
anatomical 
profile

Decoded Imaging 
phenotypes

Transcriptomic 
subgroups

~ 16,000 genes gene subsets

~ 
36

0 
pa

rti
ci

pa
nt

s

su
bg

ro
up

s

Clinical 
profileClustering

Subgrouping

Decoded Imaging 
phenotypes

predicted mRNA across vertices

feature deviations across vertices
~ 

16
,0

00
 g

en
es

~ 
16

,0
00

 g
en

es

~ 
36

0 
au

tis
tic

 p
ar

tic
ip

an
ts

~ 360 participants

Predicted vertex deviations per subject

B  Methods overview

A   Background

Vertex-level brain 
transcriptome

Vertex-level imaging 
phenotypes

age + sex + IQ + ...

m
or

ph
om

et
ric

  f
ea

tu
re

Map individuals to neurotypical range

Standardization within 
neurotypical range

Predict gene mRNA levels across cortex 

Spatial 
Interpolation

e.g., HTR1A

~ 41,000 vertices per hemisphere

subset3

30

40

Map tissue samples to cortical surface

Transcriptomic 
Alignment

Vertex-level morphometric features

Surface 
Reconstruction

MRI data 

~ 
75

0 
pa

rti
ci

pa
nt

s

~ 1,600 AHBA samples in cortical tissue

GO terms

traits

cortical 
thickness

Autism is highly 
heterogenous at both 
the mechanistic and 

phenotypic level.

Step 1: Standardization of imaging phenotypes

Step 3: Spatial 
correlation

Step 2: Preparation of gene expression data from the AHBA

Step 4: Transcriptomic subgrouping of IDPs Step 5: Characterization of subgroups

Biologically informed 
subgroups of autistic 

individuals. We aim to parse the heterogeneity by 
subgrouping autistic individuals and link 

those to putative underlying mechanisms.

Spatial 
correlation

Figure 1. Schematic overview of the analytical framework. (A) Schematic overview of the background of the study. (B) Schematic overview of the methods 
of the study consisting of transcriptomic alignment between standardized IDPs (step 1) and gene expression data provided by the AHBA (step 2) via spatial 
correlation (step 3) and clustering of IDPs based on similarities in transcriptomic associations (step 4), with subsequent clinical and molecular characterization 
(step 5). AHBA, Allen Human Brain Atlas; GO, gene ontology; IDP, imaging-derived phenotype; MRI, magnetic resonance imaging; mRNA, messenger RNA.
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Molecular Characterization of Subgroups Using 
Gene-Set Enrichment Analysis

To link subgroups to mechanisms, gene-set enrichment an-
alyses were performed to annotate each subgroup based on 
the gene sets most representative of each subgroup. There-
fore, we used the gene sets with the highest average corre-
lations obtained through clustering. These subsets contained 
the most significant genes based on the absolute correlations, 
thresholded at p adjusted , .01. Initially, we tested these gene 
sets for enrichment of genes known to be involved in the 
etiology of autism including genes with rare and de novo 
variants (45), differentially expressed genes (DEGs) (46), and 
coexpression modules that mediate typical brain development 
in autism (47). Additionally, we tested for an enrichment of 
gene ontology (GO) terms. For details about the gene-set 
enrichment analyses, see Molecular Characterization of 
Subgroups Using Gene Enrichment Analysis in Supplemental 
Methods.

RESULTS

Subgrouping of IDPs Based on Similarities in 
Transcriptomic Signatures

Gene expression decoding of standardized IDPs resulted in a 
participant 3 gene (359 3 15,633) matrix of spatial correla-
tions (Figure 2A) representing the absolute strength of the 
transcriptomic associations between IDPs and cortically 
expressed genes and was subsequently utilized for data-
driven, unsupervised k-means clustering. We discerned an 
optimal bifurcated clustering solution with a mean boot-
strapped Jaccard similarity index of 0.95 and 0.98, subdivid-
ing participants into two subgroups: one group of individuals 
(subgroup 1) with an average moderate degree of tran-
scriptomic associations (n = 101; 27 female and 72 male; 
mean absolute r spatial = 0.13) and one group (subgroup 2) with 
a low average degree of transcriptomic correlations (n = 258;
74 female and 184 male; r spatial = 0.07) (Figure 2A). Clustering 
across genes revealed 4 gene sets (gene sets 1–4), with 
Jaccard indices of 0.96, 0.95, 0.93, and 0.95, respectively. 
To further investigate the putative underlying mechanisms 

in individuals with a moderate degree of transcriptomic cor-
relations, a second-level clustering was performed across 
subgroup 1, delineating 2 subgroups, subgroup 1A (n = 75; 25 
female and 50 male) and subgroup 1B (n = 26, 2 female and 24

male), with a mean bootstrapped Jaccard similarity index of 
0.96 and 0.99, respectively. Each of the 3 subgroups was 
linked to gene sets, i.e., subgroup 1A showed low to moderate
transcriptomic associations with gene set 1 (r spatial = 0.16) 
(Figure 2A). Individuals in subgroup 1B exhibited the highest
spatial correlations with genes in gene set 1 (r spatial = 0.26) and
gene set 4 (r spatial = 0.18) (Figure 2A). In contrast, individuals 
in subgroup 2 exhibited low correlations across all 4 gene sets 
(Figure 2A). There were no subgroup differences in age (F 2 = 
0.06, p = .94), FSIQ (F 2 = 0.67, p = .51), or mean CT (F 2 = 1.88, 
p = .16). However, the male-to-female ratio was significantly 
lower in subgroup 1B (χ 2 2 = 6.41, p = .04) (Table 1). Therefore, 
we covaried for these measures (age, FSIQ, sex, site, and 
mean CT) in all subsequent analyses. Overall, we found 3 
participant subgroups that were differentially associated with 
the 4 gene sets.

Subgroup Differences in Clinical Phenotypes

Next, we examined differences in clinical measures between 
subgroups. There was a significant main effect of subgroup on 
the communication domain of the ADI-R (F = 3.9, p = .03) and 
on the RBS-R (F = 3.14, p = .04) (Figure 3A). Individuals in 
subgroup 1B had lower symptom scores compared with in-
dividuals in subgroup 1A or 2. There were significant subgroup 
differences in sensory symptoms, particularly on the taste 
subscale of the SSP (F = 4.22, p = .02) (Figure 3B). Thus, in-
dividuals in subgroup 1B, who exhibited the strongest tran-
scriptomic associations, showed significantly lower symptom 
scores than individuals in other subgroups, confirmed by post 
hoc t tests (Figure 3F). However, there were no significant 
differences in co-occurring symptoms or other autistic traits 
(Table S4).

Neuroanatomical Differences Between Subgroups

Subgroups also differed significantly in CT. There was a sig-
nificant main effect of subgroup in the left temporal pole 
(approximately Brodmann area [BA] 36/38) (Figure S4). 
Furthermore, individuals in subgroup 1A had significantly 
increased CT in the left isthmus cingulate cortex and the left 
posterior cingulate cortex (BA 23/24) compared with in-
dividuals in subgroups 1B and 2. Additionally, individuals in 
subgroup 1A showed significantly increased CT in the right 
middle frontal gyrus (BA 9/44/45) and decreased CT in the left 
posterior cingulate cortex (BA 23/31), the left temporal pole
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Figure 2. Subgrouping results. (A) Heatmap of 
absolute spatial correlations (r spatial ) between each 
standardized IDP and the cortical expression 
signatures of 15,633 protein-coding genes. Sub-
fields result from a 2-step clustering solution (k-
means) that initially subdivided participants into a 
group with medium to high transcriptomic asso-
ciations (subgroup 1) and a group with low to 
medium transcriptomic associations (subgroup 2). 
Second-level clustering further subdivided in-
dividuals in subgroup 1 into subgroup 1A and 
subgroup 1B, with differential transcriptomic as-
sociations with gene set 1 and gene set 4, 
respectively. (B) Average standardized IDPs 

within subgroups (IDP z ). z indicates normalized deviations from the typical developmental trajectory of cortical thickness. IDP, imaging-derived
phenotype.
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(BA 36/38), and the right isthmus cingulate cortex (BA 24) 
compared with individuals in subgroup 2 (Figure 3F–H and 
Table S3).

Molecular Characterization of Subgroups

We tested the gene sets with the highest absolute tran-
scriptomic associations with the subgroups using gene-set 
enrichment analysis. The 3 resulting subsets consisted of 
significant genes only (p adjusted , .01). Gene subset A con-
tained 1221 genes significantly associated with subgroup 1A. 
Gene subsets B and C were associated with subgroup 1B and 
consisted of 1340 and 65 genes, respectively (Figure 4A). Of 
these subsets, only subsets A and B were significantly 
enriched for autism candidate genes and DEGs in autism 
(Figure 4B). Gene subset A was significantly enriched for up-
and downregulated genes in autism that have previously been 
associated with GO terms that represent synaptic functioning 
and neuronal signals (9,46). Gene subset B was enriched for 
DEGs linked to synaptic functioning and transmembrane ac-
tivity and for SFARI (Simons Foundation Autism Research 
Initiative) autism genes (46) (Figure 4B).
Next, we tested the enrichment of genes in coexpression 

modules that mediate typical brain development (47). Notably, 
all gene subsets showed a significant enrichment for coex-
pression module M2, associated with synaptic transmission, 
which exhibits peak expression during early childhood and 
adolescence (Figure 4C). The same applies to synaptic 
transmission module M15, which was significantly enriched in 
gene subsets A and B. We observed a significant enrichment 
of module M20, which is linked to zing-finger proteins and 
transcription factors (TFs) (47). Unlike synaptic modules, 
coexpression modules representing TFs exhibit peak 
expression during prenatal brain development and show the 
lowest expression levels during childhood (Figure 4D). Lastly, 
in gene subset B linked to subgroup 1B, we observed an 
enrichment of modules M8 (neuronal development TFs) and 
M16 (cell adhesion signaling), with peak expression during the 
prenatal stage and during childhood/adolescence. Overall, 
IDPs in autism converge onto the coexpression signatures of 
specific transcriptional programs that impact brain develop-
ment at different developmental stages.
Lastly, we annotated subgroup 1A and subgroup 1B by 

testing for an enrichment of general GO terms. Therefore, we 
extracted the genes from gene subset A that were exclusively 
associated with subgroup 1A (gene subset 1A only ) and subset 
B genes that were only associated with subgroup 1B (gene 
subset 1B only ). This resulted in 657 genes for gene subset 
1A only and 776 genes for gene subset 1B only . The subgroups 
differed in terms of enrichment profiles, with subset 1A only 
showing a stronger enrichment of biological processes and

gene subset 1B only showing a stronger enrichment of cellular 
component terms (Figure 4E, F and Table S7).

DISCUSSION

In this study, we used an imaging transcriptomics approach to 
dissect autism heterogeneity based on the transcriptomic 
signatures associated with individual IDPs. Additionally, the 
derived subgroups were characterized in terms of clinical, 
neuroanatomical, and molecular measures. We established 
that 1) subgroups differed on the clinical, neuroanatomical, 
and molecular levels and that 2) subgroups converged onto 
different putative molecular mechanisms. These findings 
highlight mechanistic and phenotypic differences between 
subgroups of autistic individuals, providing a framework to 
further elucidate the variability within autism.
Within this framework, we initially transcriptomically deco-

ded the structural IDPs from 359 autistic individuals, using 
spatially dense representations of the AHBA transcriptome. 
The individual’s neurophenotypes were characterized based 
on measures of CT, a morphometric feature known to be 
influenced by both genetic variation and differences in gene 
expression (48,49). Differences in CT in autism are well 
documented and have been linked to its molecular etiology 
(8,11). Our study indicates that the transcriptomic profiles 
associated with IDPs in autism vary across individuals. This 
finding is consistent with previous reports suggesting that 
each person’s neuroanatomy is marked by individualized 
patterns of neuroanatomical deviations from the typical tra-
jectory of brain development, i.e., a neuroanatomical finger-
print (16). Thus, rather than analyzing absolute measures of 
CT, we standardized IDPs within the neurotypical range prior 
to decoding using an age- and sex-matched sample of control 
participants recruited at the same acquisition sites. This 
standardization of IDPs is an important step, as it makes it 
possible to perform comparative analyses across demo-
graphically diverse phenotypes and focus on interindividual 
differences rather than on group mean differences. This 
approach allows accounting for interindividual variability due 
to demographic and technical confounds. It thus places all 
data within the broader context of neurodiversity (50) and is 
consistent with previous approaches (14,15,51) emphasizing 
the conceptual relevance of elucidating neurodiversity in 
autism. This approach is particularly well suited for sub-
grouping purposes.
Using unsupervised clustering approaches, we subdivided 

individuals based on similarities in their IDP-related tran-
scriptomic profiles. We discerned 3 subgroups that were 
differentially associated with 4 different gene sets. The 
strongest transcriptomic associations were observed in in-
dividuals within subgroup 1B. Most individuals exhibited small 
spatial associations between IDPs and gene expression

◀

of the SSP, using a post hoc t test. (G) Subgroup differences in CT between subgroup 1A and subgroup 1B. (H) Subgroup differences in CT between 
subgroup 1A and subgroup 2. (I) Subgroup differences in CT between subgroup 1B and subgroup 2. For all surface-based statistical patterns, the upper 
panels show the t test statistic (unthresholded) associated with each subgroup contrast. The lower panels indicate clusters with significantly increased 
(orange) and decreased (blue) CT for the respective subgroup comparison (random field theory–based cluster-corrected p , .05, 2 tailed). ADI-R, Autism 

Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation Schedule; BAI, Beck Anxiety Inventory; BDI-II, Beck Depression Inventory-II; BDI-Y, 
Beck Depression Inventory for Youth; BYI-II, Beck Anxiety Inventory for Youth-II; CT, cortical thickness; L, left hemisphere; R, right hemisphere; RBS-R, 
Repetitive Behavior Scale-Revised; SRS, Social Responsiveness Scale; SSP, Short Sensory Profile.

Subgrouping Imaging-Derived Phenotypes in Autism

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging ■ 2025; ■:■–■ www.sobp.org/BPCNNI 7

Biological
Psychiatry:
CNNI

http://www.sobp.org/BPCNNI


Figure 4. Gene-set enrichment analysis. (A) Average absolute spatial correlations (Fisher’s z transformed) within subgroups, resulting in 3 gene subsets 
labeled A (yellow), B (green), and C (red). (B) Odds ratios at a false discovery rate–corrected p adjusted threshold of .01 resulting from the gene-set enrichment 
analyses for genes expressed in gene subsets A, B, and C, respectively. Gene sets were subdivided into sets with differential gene expression in autism and 
sets representing autism likelihood genes. Gene sets are annotated and labeled based on their original publication. (C) Enrichment of genes mediating typical 
brain development as reported in the spatiotemporal transcriptome dataset provided by Kang et al. (47). Set names contain their respective coexpression 
module label (e.g., M1) followed by their functional description based on their GO term enrichment. (D) Spatiotemporal expression profiles of brain gene 
modules that were significantly enriched in the gene subsets for module 2 (synaptic transmission) and module 20 (ZNFSOX transcription factor). The x-axis 
shows the developmental time frame (pcw), and the y-axis shows the different brain regions. (E) Venn diagram showing the number of shared and distinct 
genes from subsets A and B, resulting in gene subset 1A only (significantly associated with subgroup 1A exclusively) and gene subset 1B only (significantly 
associated with subgroup 1B exclusively) (left). The middle and right panels indicate the functional enrichment of GO terms for gene subset 1A only and gene 
subset 1B only , respectively. Up and down indicate upregulated and downregulated expression in autism, respectively. Summary statistics and details for all 
enriched terms are listed in Tables S6 and S7. A1C, primary auditory cortex; AMY, amygdala; ASD, autism spectrum disorder; BP, biological process; CBC,
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signatures, as was characteristic of subgroup 2. Therefore, 
autistic individuals differ in both the magnitude and nature of 
the transcriptomic associations, further substantiating the 
growing evidence of significant heterogeneity in autism on the 
phenotypic and mechanistic level (13,52). These differences 
cannot be accounted for by variations in participant de-
mographic characteristics such as age and IQ. However, there 
was a significant difference in the male-to-female ratio, with a 
higher proportion of males in subgroup 1B. Therefore, we 
controlled for biological sex to reduce potential demographic 
confounding and observed that participants in subgroup 1B 
exhibited lower levels of symptom severity in social commu-
nication, repetitive behaviors, and sensory symptoms but not 
in co-occurring symptoms (e.g., anxiety, depression, ADHD). 
Previous research suggests that sex differences are a factor 
that contributes to the heterogeneity in autism (53). Thus, our 
findings need to be interpreted in this context (54), and future 
research on the interaction between sex, transcriptomic pro-
files, and clinical measures is needed. Our findings suggest 
that autistic individuals with a higher association with gene 
expression patterns exhibit less severe symptoms overall. This 
may be because typical brain development is governed by 
various transcriptional programs—temporally and spatially 
coordinated patterns of gene expression guiding the formation 
of the nervous system, i.e., processes such as neurogenesis, 
axon guidance, and synapse formation (47). Therefore, 
changes in these programs are likely to impact the formation 
of the brain’s neurocircuitry and have been implicated in the 
etiology of autism through genetic and transcriptomic in-
vestigations (46,55).
Coexpression networks were also implicated by our study. 

We found that the IDPs of individuals in subgroup 1 (i.e., the 
subgroup with the highest transcriptomic associations) were 
significantly associated with the gene expression signatures of 
genes previously reported to be up- and downregulated in the 
autism cortex (9,46). These included module CTX.M20, which 
contains genes implicated in the development and regulation 
of cell differentiation (9). Moreover, we found an enrichment of 
the gene coexpression modules that mediate typical brain 
development (47). This includes modules M2 and M15, which 
map onto synaptic transmission pathways, as well as modules 
M8 and M20, which are enriched for GO categories related to 
TFs (9). Notably, M2 and M20 follow opposite developmental 
trajectories across brain regions, with M20 being most active 
during prenatal brain development and M2 being most 
expressed during childhood. Taken together, our results 
suggest that different coexpression networks influence brain 
maturation across developmental states in a region-specific 
manner and that autistic individuals with neuroanatomical 
characteristics, spatially more closely aligned with these large-
scale transcriptomic gradients, may exhibit greater resilience. 
Our study’s strengths include the combination of imaging 

and transcriptomics data; the large, heterogeneous, and 
deep-phenotyped dataset; and our analytical framework for

parsing autism heterogeneity. However, there are limitations 
to this study. So far, we have not examined genomic variation 
that could underpin differential gene expression. Thus, it re-
mains to be established how genetic variation influences gene 
expression in autism. We utilized the AHBA (56) data, which is 
the most comprehensive gene expression atlas to date. 
Nevertheless, the AHBA is based on adult donors, while we 
examined IDPs of children, adolescents, and adults. There-
fore, we acknowledge the importance of repeating our ana-
lyses in age-matched samples to corroborate the relationship 
between genetic variation, gene expression, and neuro-
diversity in autism.

Conclusions

We identified subgroups within a sample of autistic partici-
pants based on the link between brain phenotypes and gene 
expression profiles. These subgroups showed differences in 
clinical measures and neuroanatomy. They also varied in their 
underlying genetic profiles, highlighting the biological hetero-
geneity in autism and therefore the need to develop more 
targeted support strategies.
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