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We explore neurodevelopmental heterogeneity in Autism Spectrum Disorder (ASD) through normative
modeling of cross-cultural cohorts. By leveraging large-scale datasets from Autism Brain Imaging
Data Exchange (ABIDE) and China Autism Brain Imaging Consortium (CABIC), our model identifies two
ASD subgroups with distinct brain morphological abnormalities: subgroup “L” is characterized by
generally smaller brain region volumes and higher rates of abnormality, while subgroup “H” exhibits
larger volumes with less pronounced deviations in specific areas. Key areas, such as the isthmus
cingulate and transverse temporal gyrus, were identified as critical for subgroup differentiation and
ASD trait correlations. In subgroup H, the regional volume of the isthmus cingulate cortex showed a
direct correlation with individuals’ autistic mannerisms, potentially corresponding to its slower post-
peak volumetric declines during development. These findings offer insights into the biological
mechanisms underlying ASD and support the advancement of subgroup-driven precision clinical

practices.

Autism Spectrum Disorder (ASD), or autism, is a lifelong neurodevelop-
mental condition characterized by impairments in social communication
and the presence of repetitive, unusual sensory-motor behaviors". The
global prevalence of ASD is approximately 1% in children’, with different
rates reported in specific regions, such as 2.8% in children aged 8 years in the
United States’ and 0.7% in children aged 6 to 12 years in China’. Several
factors, including improved survey methodologies, diagnostic practices,
public awareness and access to services, have contributed to this increase in
prevalence®’. Over time, understanding of ASD has developed from a
categorical diagnosis to a dimensional perspective of neurodiversity’. This
change redefined autism as a spectrum that includes a wide range of
characteristics within a unified framework®. However, the expanded diag-
nostic criteria may have too low thresholds for diagnosis’, and have intro-
duced significant heterogeneity within ASD. This heterogeneity suggests
that the term “spectrum” encompasses multiple subgroups with distinct
etiological phenotypes'*".

Recent neuroimaging studies increasingly highlight ASD’s biological
heterogeneity as a key barrier to identifying consistent brain-behavior
relationships. Traditional case-control neuroimaging studies, which assume
ASD and typical developing groups as homogeneous entities, often fail to

account for subgroup differences'. This has led to inconsistent findings
across brain regions and participants, further complicating efforts to identify
reliable brain-behavior biomarkers. The decreasing effect sizes in group
comparison studies over time" highlight the difficulty of constructing
mechanistic models of ASD. This heterogeneity challenge extends to
intervention research, where differential treatment responses across ASD
subgroups'*" suggest that precision approaches accounting for neurobio-
logical variation could enhance outcomes. Data-driven clustering techni-
ques have emerged as a promising approach to address this complexity by
leveraging cognitive and behavioral profiles alongside patterns of brain
morphology and function. Various clustering methods'** have been used
to identify meaningful subgroups, in order to uncover the neurobiological
mechanisms of ASD and provide insights into subgroup-specific traits**'.
While despite decades of effort, inconsistencies in sample selection, classi-
fication methods, and feature selection between studies remain significant
challenges™. These issues have limited the ability of clustering techniques to
consistently identify robust and replicable subgroups.

Inconsistencies in ASD studies may be due to altered neurodevelop-
mental adaptations™ and participant selection biases™. These limitations
highlight the need to group variables with strong biological relevance for the
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ASD subgroups™. At the same time, individual differences in sex, intelli-
gence, medication use, and comorbidities™*, along with methodological
variability”’ in data acquisition and analysis, complicate the interpretation of
the results of neuroimaging studies. In response to these challenges, nor-
mative modeling™ techniques offer a promising framework to capture the
full range of neurobiological variation'’. This approach enables standardized
assessments by comparing an individual’s brain morphology to population-
based references”. In previous ASD studies, references were often built on
internal or public datasets'******, but the relatively small sample size limits
the generalizability and reliability of the results. Recently, the Lifespan Brain
Chart Consortium (LBCC, https://github.com/brainchart/lifespan) pro-
vided neurodevelopmental variations throughout life from the
most inclusive data available”, providing a robust framework for us to
achieve percentile-based comparisons of ASD with considerable statis-
tical power.

This study adjusted the LBCC normative models in two large-scale
cross-cultural ASD consortia: the China Autism Brain Imaging Consortium
(CABIC, https://php.bdnilab.com)” and the Autism Brain Imaging Data
Exchange (ABIDE, https://fcon_1000.projects.nitrc.org/indi/abide)™**.
Focusing on childhood development, we used the largest-scale brain charts™
to explore neurodevelopmental heterogeneity in ASD before adolescence.
We classified ASD into subgroups using spectral clustering based on Out-of-
Sample (OoS) centile scores, a biological measure which quantified brain
morphological deviations of ASD from normative growth. A Support
Vector Machine (SVM) with Recursive Feature Elimination and Cross-
Validation (RFECV) identified key brain regions driving subgroup classi-
fication. The ABIDE-based classifier was then applied to CABIC to identify
similar subgroups. Brain-behavior analyses were performed separately for
each dataset to identify reproducible subgroup-specific correlations. From a
perspective of brain morphology, this work disentangles the mechanisms of
mixed neurosubtypes and provides new insight into the biological com-
plexity of ASD.

Results

Brain morphological profiles reveal two distinct autism
subgroups

We first analyzed the ABIDE dataset. The distributions of the OoS centile
scores across 34 bilateral Desikan-Killiany™® cortical volumes ranged
from 0 to 1 (Supplementary Fig. 1a). OoS scores estimate the morpho-
logical variations of each participant in 34 brain regions compared to the
median regional volumes of the population (50th centile, equivalent to a
0.5 OoS score). Relative to 0.5, individuals with more atypical phenotypes
have more extreme scores. A Shapiro-Wilk test on the 34 OoS scores
indicated that none followed a normal distribution (Table 1, column 2).
Using spectral clustering on the OoS scores, we identified two distinct
clusters (ASD subgroups) with the highest silhouette coefficient among
cluster solutions ranging from two to ten (Fig. la). All p-values for
between-subgroup comparisons (two-sample t-tests for the paracentral
and pars orbitalis regions, and rank-sum tests for all other regions) were
<0.001). One subgroup, referred to as “L”, exhibited generally Lower OoS
scores, while the other referred to as “H”, displayed Higher scores
(Table 1, columns 5 and 7).

Certain regions of the brain showed significant differences in their OoS
score distributions between the two subgroups (Fig. 1g; Supplementary
Fig. 1b. For CABIC results, please see Supplementary Fig. 2a and 2b).
Subgroup H exhibited greater variability in the occipital lobe, particularly in
the lingual gyrus, pericalcarine cortex, and cuneus. In contrast, subgroup L
showed more pronounced reductions in these regions compared to the
normative benchmark (0.5). Other regions, such as the pars opercularis and
superior temporal gyrus, also exhibited subgroup-specific changes. The
results of the Shapiro-Wilk test for OoS scores (Table 1, columns 4 and 6)
indicated that more brain regions in subgroup H followed a normal dis-
tribution compared to subgroup L. Broader variability was observed in
regions such as the entorhinal cortex in subgroup L and the pericalcarine in
subgroup H, highlighting further subgroup-specific clustering.

Distinct structural and age differences between subgroups

The median OoS scores before clustering (Fig. 1b; Table 1, column 3) reveal
a mixed pattern of deviations across regions. Most regions exhibit reduced
volumes, particularly in the occipital lobe. However, some regions, such as
the precuneus, paracentral lobule, transverse temporal gyrus, and insula,
show slightly higher OoS scores. This combined pattern reflects overlapping
structural deviations from both subgroup H and L (Fig. 1¢), obscuring the
distinct morphological differences that become evident after clustering. For
instance, although subgroup L shows smaller volumes in the insula and
precuneus, the larger volumes in subgroup H predominantly drive the
combined pattern in the whole population. In contrast, smaller volumes of
the lingual gyrus and the middle temporal gyrus in subgroup L have a
stronger influence on the overall result. Some regions, such as the peri-
calcarine cortex, are almost entirely influenced by subgroup L. Meanwhile,
regions like the inferior and superior temporal gyrus exhibit volumes close
to the normative average because of the contrasting characteristics of both
subgroups effectively canceling each other out.

To identify the brain regions most associated with morphological
abnormalities, we calculated the prevalence of abnormalities for each region
in the two subgroups. The prevalence represents the percentage of partici-
pants with OoS scores below 0.025 (2.5% centile) for subgroup L, while
above 0.975 (97.5% centile) for subgroup H. Subgroup L (Fig. 1f; Table 1,
column 8) exhibited the highest prevalence of abnormalities in regions such
as the middle and inferior temporal gyrus, pericalcarine cortex, frontal pole,
and medial orbital frontal gyrus. In contrast, subgroup H (Fig. 1f; Table 1,
column 9) generally exhibited less severe abnormalities, with a concentra-
tion in the insula, transverse temporal gyrus, and caudal anterior cingulate.
Participants in subgroup L were significantly younger than those in sub-
group H (Fig. 1h; p = 0.02, Supplementary Table 1). However, no significant
differences were observed in the category PDD (p = 0.32), the MRI scanner
model (p = 0.07) and the manufacturer (p = 0.86), the data collection site
(p = 0.16) (Fig. 1k), IQ (Fig. 1i, see Supplementary Table 1 for details), or
scores from ADI-R (Fig. 1j), SRS (Fig. 11), and ADOS-2 (Fig. 1m). The
corresponding results for CABIC are shown in Supplementary Fig. 3.

Machine learning reveals subgroup morphological features

The optimized SVM model for the identification of subgroups demon-
strated robust predictive performance. It used a polynomial kernel with a
regularization parameter C = 0.1 and a kernel coefficient y = 1. The model
achieved a high classification accuracy (0.95, p < 0.001) and a F1 score (0.94,
p < 0.001) in five cross-validation folds. Figure 1d shows the SHapley
Additive exPlanations (SHAP) summary plot for the top 10 selected fea-
tures. Figure le and Supplementary Table 2 summarize the mean SHAP
values for all 29 selected regions. SHAP values” quantify the contribution of
individual brain regions to the predictions of the model. Among the regions,
the isthmus cingulate, entorhinal cortex, precuneus, and middle temporal
gyrus emerged as the most predictive features. Higher SHAP values for these
regions were strongly associated with subgroup H, while lower values cor-
responded to subgroup L. These findings indicate different volumetric
patterns in the cingulate, temporal, and parietal areas, effectively distin-
guishing the two subgroups.

Distinct structural covariance patterns across subgroups

Structural covariance analysis on OoS scores revealed significant correla-
tions between brain regions, with distinct patterns observed across ASD
subgroups and control group (Fig. 2c). These patterns were reproduced in
both the ABIDE and CABIC datasets. In subgroup H, enhanced covariation
was identified between the isthmus cingulate and the caudal middle frontal
region (ABIDE: z=2.88, p = 0.00; CABIC: z = 2.25, p = 0.02). In subgroup L,
the parahippocampal gyrus showed reduced covariation with the entorhinal
cortex (ABIDE: z = —2.07, p = 0.04; CABIC: z = — 3.25, p = 0.00). Similarly,
reduced covariation was observed between the posterior cingulate and the
entorhinal cortex (ABIDE: z= —2.12, p = 0.03; CABIC: z = —2.64, p = 0.01)
and between the insula and the entorhinal cortex (ABIDE: z = —3.30,
p = 0.00; CABIC: z = —2.18, p = 0.03). An increased covariation was
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Table 1 | Group comparisons of regions morphology between overall and two ASD subgroups

Region 00S Scores AbP'(%)
All L H L H
P Median p Median p Median

Superior frontal 0.01 0.48 0.02 0.28 0.37 0.62 5.56 2.70
Rostral middle frontal 0.01 0.46 0.02 0.25 0.32 0.60 7.94 0.68
Caudal middle frontal 0.00 0.42 0.00 0.26 0.05 0.60 6.35 2.70
Pars opercularis 0.00 0.47 0.00 0.23 0.07 0.61 6.35 4.73
Pars triangularis 0.00 0.45 0.02 0.28 0.02 0.60 6.35 1.35
Pars orbitalis 0.01 0.46 0.06 0.33 0.11 0.56 5.56 0.68
Frontal pole 0.00 0.48 0.02 0.34 0.03 0.60 11.90 2.03
Lateral orbital frontal 0.00 0.46 0.01 0.26 0.06 0.63 7.94 2.03
Medial orbital frontal 0.00 0.42 0.00 0.26 0.04 0.61 10.32 2.70
Rostral anterior cingulate 0.00 0.45 0.00 0.25 0.04 0.65 4.76 2.70
Caudal anterior cingulate 0.00 0.47 0.01 0.30 0.00 0.68 3.97 6.76
Precentral 0.00 0.45 0.01 0.26 0.17 0.60 6.35 3.38
Paracentral 0.01 0.52 0.05 0.34 0.10 0.62 4.76 5.41
Postcentral 0.00 0.48 0.01 0.29 0.05 0.64 7.14 4.05
Supramarginal 0.00 0.49 0.01 0.31 0.04 0.65 7.94 3.38
Posterior cingulate 0.00 0.46 0.02 0.29 0.04 0.64 7.94 5.41
Isthmus cingulate 0.00 0.47 0.00 0.27 0.06 0.64 3.97 4.05
Precuneus 0.00 0.52 0.04 0.29 0.02 0.70 5.56 4.73
Superior parietal 0.00 0.44 0.00 0.27 0.08 0.60 7.94 2.70
Inferior parietal 0.00 0.45 0.07 0.30 0.02 0.63 7.94 2.03
Transverse temporal 0.00 0.52 0.02 0.32 0.03 0.68 7.94 6.08
Banks superior temporal 0.00 0.44 0.00 0.26 0.02 0.59 3.97 5.41
Superior temporal 0.00 0.49 0.00 0.26 0.04 0.67 6.35 4.05
Middle temporal 0.00 0.44 0.02 0.24 0.06 0.61 17.46 2.70
Inferior temporal 0.00 0.49 0.05 0.30 0.04 0.62 11.90 0.68
Fusiform 0.00 0.45 0.01 0.26 0.09 0.59 10.32 1.35
Parahippocampal 0.00 0.49 0.02 0.33 0.01 0.63 3.17 2.70
Entorhinal 0.01 0.51 0.05 0.40 0.04 0.62 6.35 0.68
Temporal pole 0.00 0.44 0.03 0.36 0.02 0.58 10.32 1.35
Lateral occipital 0.00 0.46 0.01 0.28 0.02 0.63 9.52 2.70
Lingual 0.00 0.40 0.00 0.24 0.01 0.58 7.94 2.70
Pericalcarine 0.00 0.36 0.00 0.23 0.01 0.53 11.90 2.70
Cuneus 0.00 0.46 0.01 0.25 0.03 0.55 6.35 1.35
Insula 0.00 0.53 0.02 0.31 0.02 0.69 3.17 6.08

'AbP Prevalence of abnormallities.

observed in subgroup L between the parahippocampal gyrus and the lateral
occipital cortex (ABIDE: z = 1.97, p = 0.05; CABIC: z = 2.04, p = 0.04).

Brain-behavior correlations in Subgroup H

We examined correlations between cortical region volumes (OoS scores)
and clinical measures in the ABIDE and CABIC datasets, identifying sig-
nificant associations that were consistent between both datasets. All sig-
nificant correlations were found within subgroup H. The transverse
temporal gyrus showed positive correlations with ADOS (ADOS-2 in
ABIDE and ADOS in CABIC) Total and Social Affect scores (Fig. 2a). In the
CABIC dataset, moderate correlations were observed for Total
(r(198) = 0.17, p = 0.02) and Social Affect (r(191) = 0.21, p = 0.00) score.
Stronger correlations were identified in the ABIDE dataset for Total
(r(93) = 0.24, p = 0.01) and Social Affect (r(93) = 0.20, p = 0.04) score. The
inferior temporal gyrus was positively correlated with RRB (restricted
interests and repetitive behaviors), with a slightly stronger correlation in

ABIDE (r(94) =0.19, p = 0.05) compared to CABIC ((189) =0.17, p = 0.02).
The volumetric centile of the isthmus cingulate is correlated with SRS
Autistic Mannerisms, showing a higher correlation in ABIDE (#(58) = 0.33,
p=0.01) than in CABIC (r(192) = 0.14, p = 0.04). No significant correlations
were identified between structural covariance patterns and cognitive
behavior outcomes.

As a common comorbidity of ASD, intellectual disability is closely
associated with atypical brain morphological developmental patterns
that accompany individual differences in intellectual functioning. To
examine whether Full-Scale Intelligence Quotient (FIQ) mediates the
relationships between brain morphology and cognitive behaviors within
clusters, mediation analyses were conducted on the significant correla-
tions we found in subgroup H. Results revealed direct effects for specific
cortical regions (Fig. 2b). The transverse temporal gyrus showed a direct
effect on ADOS-2 Total (C' = 0.21, p = 0.03), while the isthmus cin-
gulate exhibited a direct effect on SRS Autistic Mannerisms
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Fig. 1 | Clustering-derived subgroups reveal distinct brain morphological pat-
terns in ASD from ABIDE dataset. a Silhouette scores across different clustering
solutions (2 to 10 clusters). The highest silhouette score indicates two distinct
subgroups. b Median OoS scores of 34 cortical regions before clustering. ¢ Median
OoS scores of ASD subgroup H (top) and L (bottom). d SHAP summary plot
displaying the top 10 brain regions with the highest contributions to the SVM
model’s predictions. e The mean SHAP values across the 29 selected cortical regions
contributed to the classification. f Prevalence maps depicting the proportion of
participants with extreme (2.5% for subgroup L, 97.5% for subgroup H) structural
anomalies. g QoS scores across 34 cortical regions (top) and global measures (bot-
tom) for subgroup H (orange) and L (green). TCV total cortical volume, WMV total
white matter volume, GMV total cortical gray matter volume, sGMV total

subcortical gray matter volume, CSF total ventricular cerebrospinal fluid volume,
mCT mean cortical thickness, tSA total surface area, Dots indicate the mean value of
OoS scores, bars indicate the standard deviation. See Supplementary Information
Supplementary Fig. 1b and Supplementary Fig. 1d for detailed density plots. Dis-
tribution of participant ages (h); IQ scales (i); ADI-R (j); PDD category (k, top left),
MRI scanner model (k, top middle), manufacturer (k, top right), and data collection
site (k, bottom); SRS (1); and ADOS (m) across the two subgroups, with subgroup L
participants being significantly younger than those in subgroup H (p = 0.02). Note,
the left hemispheres are plotted in (b, ¢, e, and f) just for visualization purposes. For
plotsh-j,1,and m, the center line shows the median; the box limits represent the 25th
and 75th percentiles; the whiskers show the minimum and maximum values; and the
dots represent potential outliers.

(C' = 0.32,p = 0.01). As our analysis relied on cross-sectional data, the
observed brain-behavior relationships represent correlations rather than
causal effects. Our mediation hypotheses regarding developmental
brain-behavior causality require validation through longitudinal studies.

While no mediation effects through FIQ were observed, both from
brain — cognitive behaviors or in reverse (Supplementary Fig. 4).
Neither direct nor indirect effects were significant for correlations to
ADOS-2 RRB or Social Affect.
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Fig. 2 | Brain-behavior correlations and structural covariations of Out-of-Sample
scores. a Reproducible correlations between brain region volumes, measured as Out-
of-Sample (O0S) scores, and clinical measures across ABIDE and CABIC datasets
(subgroup H only). b Mediation models for significant brain-behavior associations
identified in subgroup H (ABIDE cohort only). Black solid arrows represent
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significant effects, while gray arrows indicate non-significant ones. Top: transverse
temporal; bottom left: inferior temporal; bottom right: isthmus cingulate.

¢ Significant structural covariations across ABIDE and CABIC datasets. Positive z-
values (red lines) indicate stronger covariance in ASD participants compared to
controls, while negative z-values (blue lines) reflect weaker covariance.

Discussion

This study used the ABIDE and CABIC datasets to discover distinct brain
morphological subgroups of ASD within a young male cohort. We identi-
fied two subgroups characterized by significant differences in OoS scores in
34 cortical regions. Machine learning models showed a high predictive
accuracy in distinguishing these subgroups based on their brain morphol-
ogy. Furthermore, structural covariance and brain behavior correlation
analysis illustrated different patterns of morphological relationships and
their associations with clinical measures, especially in subgroup H. The
consistent correlations across both the ABIDE and CABIC datasets high-
light the robustness and reproducibility of our results across diverse cohorts.
We will now discuss these findings from several neurobiological and neu-
rodevelopmental perspectives to enhance our understanding of the distinct
morphological patterns identified.

Studies have reported extremely large or small head circumferences in
individuals with ASD, possibly related to different subgroups. Early brain
overgrowth is one of the most consistent findings in ASD research®.
Abnormal increases in brain size during early development suggest that
atypical cell proliferation significantly contributes to ASD symptoms™.
Ultrasound studies have detected head enlargement during the second tri-
mester in individuals later diagnosed with ASD*. iPSC-based studies reveal
enlarged embryonic stage brain cortical organoids (BCOs) in babies with
ASD, with larger BCOs associated with more severe social symptoms*'. MRI
scans of these individuals show overgrowth in primary auditory and
somatosensory cortices, while undergrowth in the visual cortex". This
neuronal overproduction, caused by the acceleration of the cell cycle, results
in impaired differentiation and ultimately disrupts neural functions®.

Smaller brain volumes are also frequently reported in ASD. A meta-
analysis® identified volumetric reductions in a large cluster of regions,
including the parahippocampal gyrus and entorhinal cortex. Higher levels
of autistic traits have been associated with a smaller total cortical volume
(TCV), a lower cortical thickness, a smaller surface area and a lower

gyrification**”. One potential explanation for this global brain

underdevelopment is impairment caused by insufficient blood circulation
and oxygen saturation®. For example, children with complex congenital
heart disease (CHD) also demonstrate cognitive difficulties similar to those
observed in ASD and have an increased likelihood of developing ASD".
Similarly, head enlargement also coincide with greater increases in height
often®. Therefore, brain overgrowth could be part of the broader physical
growth dysregulation® too.

These evidences provide the distinct neurobiological basis for the
subgroups identified in our study. The different underlying physiological
mechanisms may explain the inconsistent effectiveness of commonly used
pharmacological treatments. For example, unsupervised data-driven cluster
analysis on ASD children revealed an optimum of two intranasal oxytocin
intervention-sensitive subtypes. Our discovery of two distinct ASD sub-
types with divergent brain morphologies further supports the necessity for
subtype-specific therapeutic strategies. Future research focusing on targeted
pharmacological interventions for individual subtypes will not only explain
how these treatments modulate brain function and ultimately translate into
clinical benefits, but also advance personalized medicine in ASD. Specifi-
cally, by mapping neurobiological heterogeneity to differential therapeutic
outcomes, this approach could reconcile previous inconsistencies in treat-
ment efficacy while optimizing intervention protocols for mechanistically
defined patient subgroups.

Abnormal neural migration and cortical laminar organization in
ASD™ suggest that structural abnormalities are unlikely to be localized.
Postmortem studies have identified focal laminar disorganization and
mis-migrated neurons in the prefrontal and temporal cortex, particularly
in layers 2, 3, and 4. Layers 2 and 3 support information exchange
between cortical regions, while layer 4 receives sensory inputs’. Dis-
ruptions in these layers can cause profound miscommunication between
the sensory and higher-order cognitive regions. Key regions in our
clustering analysis (such as the precuneus, isthmus cingulate, and
entorhinal cortex; Fig. 3a, a~c) are primarily involved in higher-order
association networks (Fig. 3a). As an idea for exploring hierarchical
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Fig. 3 | The theoretical brain functional network impairment model of two ASD
subgroups. a A brain map combining the 34 Desikan regions™ with the latest 15
large-scale brain functional networks estimated from individuals”. a, precuneus; b,
isthmus cingulate; c, entorhinal; d, middle temporal; e, inferior temporal gyrus; f,
pericalcarine; g, frontal pole; 4, caudal anterior cingulate; i, transverse temporal; and
j, insula. b A schematic of the potential spatial distributions of distinct functional
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impairment networks inferred from 34 cortical regions with high abnormal pre-
valence for two subgroups. VIS Visual (C Central, P Peripheral), SMOT Somato-
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Parietal Rostral, AN Action-mode network, SAL/PMN Salience/Parietal Mem-
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information flow of functional connectivity, Stepwise Functional Con-
nectivity (SFC) analysis was introduced to disentangle brain functional
networks, and has discovered the complex connectivity transitions from
primary sensation to higher-order association regions of the brain™.
These existing information flow suggest different pathways of impair-
ment as the basis for the heterogeneity of ASD. Inconsistencies in
information flow reported by previous ASD studies’** may arise from
two distinct structural impairment patterns identified in our study.

The regional volume abnormalities identified in our study involve
distinct functional brain regions in the two subgroups. Subgroup L showed a
notable prevalence in the middle temporal gyrus, inferior temporal gyrus,
pericalcarine cortex and frontal pole (Fig. 3a, d~g), while subgroup H in the
caudal anterior cingulate, transverse temporal cortex, and insula (Fig. 3a,
h~j). Drawing on the spatial distributions™ of 7 large-scale functional
networks™, we constructed a schematic (Fig. 3b) of the latest 15 large-scale
functional networks of the brain estimated from individuals® (Fig. 3a). This
perspective revealed different pathways of functional impairment in the
regions with a high prevalence of abnormalities for each subgroup. Sub-
group L exhibited an atypical morphology mainly affecting Visual — Dorsal
Attention - Frontoparietal - Language and Default-mode networks (Fig. 3b,
green path), while subgroup H affected the Auditory and Somatomotor —
Action-mode and Salience/Parietal Memory - Frontoparietal networks
(Fig. 3b, orange path), indicating disturbances in peculiar unimodal sensory
integration and multimodal cortical functions. These networks are orga-
nized by three-order hierarchy that are agree well with myelination refer-
ence maps’, showing that the cerebral cortex develops sequentially,
radiating outward from motor and sensory cortex"".

This phenomenon may hint at the presence of distinct abnormal brain
functional circuits from first- to third-order networks in the subgroups. For
example, in adults without ASD”, increased gray matter volume in regions
of the somatomotor network was associated with greater attention to detail,
while changes in regions of the visual network were associated with poor
imagination. These findings suggest potential cognitive patterns in two
subgroups of ASD that have yet to be discovered. At the same time, these two
subgroups we found may respond differently to biologically targeted
therapies, emphasizing the need for more personalized approaches. For
example, functional connectivity-guided continuous theta-burst stimula-
tion (cTBS) on individual’s dorsolateral prefrontal cortex target with the
strongest connectivity to amygdala significantly improve social

communication skills in minimally verbal ASD children®. As a reduction in
brain volume and improvements in behavior outcomes, this ASD subtype
likely fit the characteristics of subgroup H in our study. Targeted modula-
tion of subgroup specific impairment pathway may gain better therapeutic
effects, therefore further refine treatment protocols for better translational
outcomes. In this case, if observed social improvements stem from reba-
lancing the subgroup H pathway, future interventions could achieve
enhanced treatment efficacy by employing personalized neuromodulation
protocols that precisely target the most morphologically burdened brain
regions within this circuitry.

In typically developing children, the principal functional gradient™ of
the cortical organization reflects differentiation within unimodal sensory
areas, progressing from the somatomotor and auditory cortex to the visual
cortex. The transition from childhood to adolescence extends this organi-
zation to higher-order association cortices’'. Brain maturation appears to
involve a shift from local to distributed network architecture. The distinct
morphological abnormalities in these two ASD subgroups, observed before
this transition begins, raise a critical question: How do these “morphological
foundations” disrupt their development from childhood to adolescence?
These structural impairment pathways in childhood are likely to contribute
further to heterogeneity in ASD during and after adolescence.

Different network-based vulnerabilities suggest that interventions
targeting specific impairments within each subgroup could be more effec-
tive. Interestingly, we found no significant differences in cognitive or
behavioral measures between the subgroups. Although there distinct pat-
terns of structural covariation between subgroups, but no significant cor-
relations with autism-related behaviors. Structural covariance reflects long-
term developmental changes. Reduced structural covariance may indicate
disruptions in shared developmental pathways, while enhanced covariance
could result from compensatory adaptations in response to atypical neu-
rodevelopmental trajectories in ASD. This implies that morphological
deficiencies may activate compensatory mechanisms during development,
leading to similar cognitive and behavioral outcomes.

These neurodevelopmental compensation mechanisms raise questions
about the stability of subgroup morphology distinctions across different
developmental stages. To validate the robustness of our ASD clusters across
different development stage, we implemented sliding 4-year age windows
(with a predefined threshold of at least 80 participants to ensure statistical
power). For each window, we applied the identical spectral clustering
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pipeline and evaluated the consistent cluster indices across each narrow age
range and the full age range. All the narrow age range population yielded two
distinct brain subtypes as similar as the characteristics in our main results.
The assignment consistency were 90.48% (5-8.9 yrs, N = 84), 91.89% (6-9.9
yrs, N = 111), 98.67% (7-10.9 yrs, N = 150), 97.71% (8~11.9 yrs, N = 175)
and 88.42% (9~12.9 yrs, N = 190). These remarkable consistency in sub-
group classification suggests that the specific impairments on brain mor-
phology are consistently maintained across development.

The observed age difference between subgroups, though minor, could
have significant implications during sensitive developmental periods. Life-
span trajectories” of 34 brain regions show an early steep increase in
volume, followed by a near-linear decline. The middle temporal gyrus peaks
at 7.8 years, while the caudal anterior cingulate peaks at 9.2 years™, possibly
related to the result that subgroup L is generally younger than subgroup H.
However, in the CABIC cohort, we observed an inverse age relationship
across both classification methods (whether using the ABIDE-classifier or
independent clustering), with the subgroup L being significantly older than
the H (Supplementary Fig. 3a and 5i). The age difference subgroups needs
future studies with larger sample sizes to validate. While here, we propose
some possible reasons for the ABIDE cohort to understand that these dis-
tinct structural abnormalities likely reflect differences in the timing of aty-
pical developmental processes.

The isthmus cingulate, a key region in subgroup clustering, typically
peaks in volume at 3.8 years. The lack of age-related decline in cortical
volume was consistently found in subgroup H in both the ABIDE and
CABIC datasets (See Supplementary Analysis and Supplementary Fig. 1f).
However, subgroup H aligns with normative references before age 5, while
subgroup L shows smaller initial volumes (Supplementary Fig. le). In
subgroup H, an increase in structural covariance between the caudal middle
frontal cortex (peaking at 7.75 years) and the isthmus cingulate (Fig. 2c)
suggests synchronized developmental trajectories. This may reflect pre-
cocious caudal middle frontal development, delayed isthmus cingulate
development, or both regions following similarly abnormal patterns™.
Correlation analyses link larger isthmus cingulate volumes in subgroup H
directly with more pronounced autistic mannerisms (Fig. 2a). These evi-
dence hint at delayed development of the isthmus cingulate in subgroup H.
With a normal OoS distribution (p = 0.06; Table 1, column 6) in this
subgroup, this morphological change appears to represent a homogeneous
and quantifiable pattern. In subgroup L, the parahippocampal gyrus
(peaking at 10.63 years) shows reduced covariance with the entorhinal
cortex (peaking at 22.67 years) but increased covariance with the lateral
occipital cortex (peaking at 5.21 years). This pattern suggests a precocious
development of the parahippocampal gyrus and/or the delayed lateral
occipital cortex in this subgroup. Enhanced structural covariances may also
reflect compensatory adaptations to mitigate structural disadvantages
inherent in abnormal developmental patterns.

Recent genome-wide association studies (GWAS)* reveal that cortical
phenotypes exhibit distinct genetic architectures, with shared genetic var-
iants influencing both normative brain size variation. Furthermore, sig-
nificant genetic correlations between cortical expansion patterns and
cognitive measures suggest multi-level mechanisms underlying neurode-
velopment. These findings collectively motivate future study of ASD to build
longitudinal cohorts to explore how genetically mediated cortical matura-
tion trajectories influences different stages of development in ASD sub-
groups. Such approaches would bridge genotype-phenotype mapping to
clinically biomarkers, advancing precision diagnostics and targeted inter-
ventions during sensitive neurodevelopmental windows.

One key contribution of this study is the reproducibility of brain-
behavior associations across the ABIDE and CABIC datasets. In our ana-
lysis, we didn’t apply on any multiple comparisons correction, three con-
siderations may explain. First, the dual-dataset cross-validation design
required consistent results across two independent cohorts (heterogeneous
in culture/age), which substantially reduces false-positive risks through
empirical replication. Second, as this is an exploratory target-discovery
studies, overly conservative adjustments might obscure biologically

meaningful results. Third, the cross-population reproducibility were
prioritized in our study. We considered that uncorrected-but-replicated
results had greater biological credibility than findings that were statistically
corrected but failed to replicate. As a result, this cross-dataset validation
confirms that the findings reflect stable neurobiological characteristics.

In subgroup H, an enlarged transverse temporal gyrus may impair
precise auditory processing. This disruption can affect auditory respon-
siveness and the ability to integrate and understand information during
social interactions. It may also damage early language perception and
acquisition, particularly before a diagnosis of ASD is made. Research has
found that when ASD is accompanied by cognitive learning needs, head
enlargement becomes even more pronounced”. This suggests a shared
mechanism linking brain overgrowth with impaired intellectual function-
ing. Alternatively, cognitive impairments might mediate the relationship
between this overgrowth and ASD. Although intelligence moderates the
relationship between ASD traits, transverse temporal gyrus abnormality
remains a direct indicator (Fig. 2b). This suggests impaired primary sensory
perceptual function that is directly disrupted by abnormal sensory input.
The inferior temporal gyrus (ITG) is also uniquely associated with restricted
interests and repetitive behaviors, despite the low prevalence of structural
abnormalities in subgroup H. This region plays a crucial role in object
recognition®. Disruptions in these functions can lead to a tendency to focus
repetitively on objects or details. While as the RRB scale in ADOS cannot
depict all the dimensions of repetitive behaviors, related results need future
studies focusing on more detailed investigations on RRB to validate.

We classified ASD subtypes solely based on brain morphology,
assuming a causal relationship between brain structure and cognition.
However, this relationship is inherently complex, thus interpreting the brain
in regions goes against its interconnected nature. Although subgroup L
exhibited a higher prevalence of structural abnormalities, suggesting more
extensive morphological variations, we did not find reproducible brain-
behavior associations between cohorts. Several factors may explain these
findings. First, cognitive impairments related to structural abnormalities in
subgroup L might be more sensitive to cultural differences. Second, the
validity of ASD diagnoses in subgroup L might be questionable. The best
predictor of a DSM-IV diagnosis has been found to be often the specific
clinic attended, rather than any defining characteristic of the individual®.
This indicates that current diagnostic tools may not capture the nuanced
behaviors directly related to brain abnormalities in subgroup L. Considering
global reduction in brain volume, which may result from cardiogenic
etiological damage, our findings highlight the urgent need for new methods
and paradigms to enable deep phenotyping and reduce the reliance on
behavioral scales for differentiation. Third, heterogeneity within subgroups
may also contribute to the limited reproducibility findings. Behavioral
paradigms targeting brain regions with a normal distribution of OoS scores
could better reveal subgroup-specific relationships between brain mor-
phology and cognitive behavior.

In our analysis, we have rigorously controlled for site effects to mini-
mize their impact on the results. To validate our approach, we performed
independent spectral cluster analysis using only NY U site data from ABIDE.
The assignment consistency compare with the main analysis reached
90.48%, demonstrating both the robustness of our clustering framework to
site-specific variability and the biological validity of the identified subtypes.
This high concordance further supports the clinical translatability of our
neurosubtyping scheme, as it exists even when derived from diverse data
sources, therefore providing a solid foundation for future multi-site bio-
marker development targeting subtype-specific mechanisms.

Some limitations in this study should be noted. First, previous research
highlights atypical structural connectome asymmetry in ASD®, while we
could not fully evaluate hemispheric differences within subgroups using
LBCC trajectories. Second, the cross-sectional nature of the data limits
causal inferences about how these abnormalities of the brain morphology
arise and their relationships with ASD symptoms. Future research should
thoroughly investigate brain function and cognitive differences between
these subgroups while exploring how demographic, environmental, and
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developmental factors shape brain-based subtypes. Combining longitudinal
data in vivo and in vitro* could expand cohort diversity and provide deeper
insights into the neurobiological and molecular mechanisms underlying
different subtypes. When designing research cohorts to study further, focus
on more representative ASD prototypes® could help reduce heterogeneity
within subgroups. Third, we should note that the use of ADOS rather than
ADOS-2 in the CABIC cohort represents a methodological limitation that
future studies with larger datasets should address.

More attention should be paid on people with more severe ASDs, such
as minimally verbal autism, who remain underrepresented in brain imaging
studies”, partly due to the challenges of collecting neuroimaging data,
especially in young children. Our research strategy uses structural magnetic
resonance imaging, feasible in natural sleep or sedation, with significant
clinical potential. However, multimodal approaches with higher ecological
validity are essential to identify neurosubtypes that include these samples.
Importantly, all current findings are derived from male ASD cohorts, any
clinical translations should be cautiously limited to male populations until
validated in females. Therefore, future studies should expand ASD cohorts
with more female representation to enable comprehensive study of sex-
specific brain morphological heterogeneity.

At the same time, replication with different clustering algorithms is
required to confirm the stability of these findings. For example, we
employed Gaussian mixture modeling (GMM) as a validation framework to
assess consistency with our main clustering results. GMM assumes the
observed data are generated from a mixture of multiple distinct Gaussian
distributions®™. As the high cluster indices consistency (83.58%) across both
methods, the brain morphology and cognitive behavior have the similar
characteristics as spectral clustering analysis (Supplementary Fig. 6). Par-
ticipants in subgroup L were also significantly younger than those in sub-
group H (p = 0.03). No significant differences were observed in other
comparisons between two subgroups. These replication with GMM
demonstrates that our ASD neurosubtyping is not method-dependent.
While more nuanced clustering approaches and strategies should be
explored in the future, as disease variations may exist within the range of
normal variation®, and multiple subpopulations may also exist in typically
developing populations™. Finally, translational studies using animal models
are essential for understanding the mechanisms underlying these different
subtypes. Such studies can provide critical information on how abnormal-
ities in brain morphology develop’".

Conclusion

Linking specific brain morphology abnormalities to cognitive or behavioral
impairments in ASD is challenging. Different biological mechanisms can lead
to similar behavioral outcomes, complicating the identification of neural
correlates. This overlap may explain the difficulty in replicating neuroima-
ging findings between studies or cohorts. Using the largest brain normative
datasets and two large-scale cross-cultural consortiums, we applied norma-
tive modeling to disentangle the heterogeneity of brain morphology in ASD.
By breaking the ASD population into smaller and more morphologically
homogeneous subgroups, we identified two subtypes of morphological
abnormalities. We identified significant correlations between cortical regions
and autistic traits across both consortia, with particular emphasis on the
isthmus cingulate cortex, as well as the transverse and inferior temporal gyri.
Based on the abnormal prevalence of regional volumes, we found two
structural impairment pathways that could disrupt sensory to higher cog-
nitive functions. These findings highlight the importance of untangling
mixed biological mechanisms and offer insight to develop effective subgroup-
driven individualized interventions. In conclusion, our study provides a
reference for elucidating the etiological mechanisms of neurodevelopmental
disorders and advancing future subgroup-driven precision clinical practice.

Methods

Participants and data preprocessing

Participants were selected from the Autism Brain Imaging Data Exchange
cohort™”. The original dataset includes 1060 autistic and 1166 non-autistic

individuals aged 5~64 years from 24 different sites. All diagnoses were based
on the DSM-IV or DSM-V criteria. We used T1-weighted MRI data from
the ABIDE (I and II) cohort. The acquisition parameters are publicly
available at https://fcon_1000.projects.nitrc.org/indi/abide/. Data quality
was assessed through manual visual inspection aided by visualization out-
puts from MRIQC (https://mriqc.readthedocs.io/en/latest/)”” (version
22.0.6). We visually rated the quality of 2451 images using a 3-class
framework”, with “0” denoting images that suffered from gross artifacts and
were considered unusable, “1” with some artifacts, but that were still con-
sidered usable, and “2” free from visible artifacts. Images with an “0” score
(for example, with severe motion artifacts, segmentation errors, or structural
abnormalities) were excluded. A total of 1907 (77.8%) images from 1726
participants passed the quality control. For the participants who had more
than one T'1-weighted run, we selected the one with the best imaging quality.

Due to the limited samples of female ASD participants, and the con-
sideration that sex-specific developmental trajectories’” and autism-related
neuroanatomical differences™”” may confound data-driven population
clustering, our study focuses only on male participants under 13 years old.
This age range reflects our interest in brain development during childhood
and early adolescence. This yielded 274 ASD participants for downstream
analyses. The participant ID list is provided in the Supplementary Data 1.
Details for participants excluded on each step is provided in Fig. 4.

Pre-processing performed through the self-developed MRI data pro-
cessing platform: Connectome Computation System (CCS, https://github.
com/zuoxinian/CCS) pipeline’®”’”. CCS optimizes the preprocessing of
structural MRI by applying various structure image processing software
through script. During our pre-processing, the raw T1-weighted image was
first reoriented to RPI orientation and cropped. Skull stripping was then
performed using Advanced Normalization Tools (ANTs)” to generate a
brain mask. For cortical surface reconstruction and gray and white matter
segmentation, the recon-all pipeline from FreeSurfer (https://surfer.nmr.
mgh.harvard.edu/)(version 6.0.0) was used, with the default brain extraction
step replaced by the ANTs-derived brain mask. Each T1-weighted image
was segmented into gray matter (GM), white matter (WM), and cere-
brospinal fluid (CSF).

The total cortical volume (TCV) was calculated as the sum of the GM
and WM volumes, following the LBCC method™. The mean cortical
thickness (CT') was calculated as a weighted average of the thicknesses of the
left and right hemispheres. The total surface area (SA) was determined by
summing the surface areas of white matter of both hemispheres. Regional
brain volumes for 34 bilaterally averaged cortical regions were evaluated
using Desikan-Killiany parcellation®. To reduce site-related variability, we
applied ComBat harmonization”. This process was implemented using
neuroCombat  (https://github.com/Jfortinl/ComBatHarmonization) R
package.

Normative scoring and clustering analysis

To assess how the brain morphology of each participant aligned with age-
standardized normative trajectories, we used the out-of-sample (OoS)
centile score®”. First, all non-ASD individuals from the site-harmonized
ABIDE data set were employed to estimate cohort-specific statistical offsets.
The centile scores of each brain measurement were then estimated for all
individuals with ASD compared to the offset trajectory (see Methods: Centile
scoring of new MRI data in the original LBCC work™). This approach takes
advantage of the generalized additive models for location, scale, and shape
(GAMLSS)® framework to estimate statistical offsets such as mean, var-
iance, and skewness. These offsets capture individual deviations from typical
brain development. OoS scores are comparable between age and cohort. The
scoring process was conducted with the publicly available code from Life-
span Charts website (https://github.com/brainchart/Lifespan).

Using OoS scores from 34 brain regions as classification features, we
applied spectral clustering” among individuals with ASD in the ABIDE
cohort. Spectral clustering was selected for its ability to detect nonlinear data
structures, which are common in brain imaging datasets. Unlike k-means
clustering, which relies on centroid-based optimization, spectral clustering
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Fig. 4 | General analytic flow in this study. Brain charts pictures are updated from Bethlehem et al.”.

transforms the data into a lower-dimensional space using the eigenvalues of
a similarity matrix. Before clustering, the Jarque-Bera test was performed to
determine whether QoS scores follow a normal distribution.

Clustering analysis was implemented using the kernlab package R.
We tested clusters of 2 to 10 to identify the optimal solution. The quality
of clustering was evaluated using the Silhouette Coefficient (SC)**, which
assesses both within-cluster cohesion and between-cluster separation.
SC values range from -1 to 1, with higher scores indicating better defined
clusters. The optimal number of clusters was decided by the highest
SC score.

Key Brain Regions for Subgroup Classification

We developed a predictive model using machine learning with individual
oS scores from 34 regions of the brain as input characteristics. We trained
a Support Vector Machine (SVM) classifier” with Recursive Feature
Elimination and Cross-Validation (RFECV). This was implemented using
the scikit-learn library in Python. Combining recursive feature elimination
(RFE)* with cross-validation allows the model to iteratively identify the
most informative features while maintaining generalizability and

robustness. The data set was divided into 80% training sets and 20% testing
sets. Using a linear SVM as the base estimator, RFECV removed less
important features in a stepwise manner, with performance monitored
through 5-fold cross-validation. This process ensured that the final feature
set balanced predictive power and reduced over-fitting.

Following feature selection, we fine-tuned the SVM model by per-
forming a grid search to optimize key hyperparameters, including reg-
ularization strength (C) and kernel coefficients (). The model was evaluated
across different kernel functions, such as linear, polynomial, and radial basis
functions, to determine the best configuration. Once optimized, the model
was trained on the selected features to achieve optimal classification per-
formance. SHapley Additive exPlanations (SHAP)” were applied to
quantify the contribution of each brain region to the model predictions.

Structural covariance network analysis

To investigate morphological relationships of a specific cluster, we con-
structed structural covariance analysis*® on QoS scores of each two regions.
Pearson’s correlation analysis was performed on residuals obtained from
linear regression models that controlled for site effects and TCV OoS scores.
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To enable statistical comparison, correlation coefficients were normalized
using Fisher’s r-to-z transformation, defined as:

1 14r
7 = Eloge(1 — r)’ (1)

where r represents the Pearson correlation coefficient between two regions.
The difference (cluster i/ii vs. normal control) in transformed correlation
coefficients was calculated using:

2

where 1, and 1, are the two sample sizes being compared. The resulting z-
values were converted to p-values using the cumulative distribution function
of the standard normal distribution.

Cluster differences and brain-behavior analysis

We investigated differences between clusters and demographic, technical
and clinical variables. For categorical variables, such as subtypes of perinatal
developmental disorders (PDD), scanner models, and manufacturers, Chi-
square tests were employed. For data collection sites, Fisher’s exact test was
used with Monte Carlo simulations to approximate p values. To ensure
robust analysis, sites with fewer than 10 participants were excluded. For
other continuous variables, statistical methods were selected based on data
distribution: the Wilcoxon rank sum test was used for nonnormally dis-
tributed data, and the two-sample #-test for data shows normal distribution.
The effect sizes were calculated using Cramér’s V for categorical variables
and Cohen’s d for continuous variables. Statistical significance was set
at p < 0.05.

To further explore brain-behavior relationships within clusters, we
performed correlation analyses using Full-Scale Intelligence Quotient (FIQ),
ADOS-2 (Social Affect and Restricted and Repetitive Behaviors, RRB), ADI-
R (Social Interaction and RRB), and SRS subscales. Pearson’s correlation
was applied to most measures, while Spearman’s correlation was used for
ADOS-2 RRB scores due to their limited range. In these analyzes, the effects
of the site and the OoS scores of TCV were controlled. Statistical significance
was set at p < 0.05, and no correction for multiple comparisons was applied.

For each group, we also examined partial correlations to investigate
structural covariance between 34 brain regions and their association with
cognitive behaviors. For each participant, the partial covariance scores of
two regions were calculated as:

partial, = residual, o, X residual, oo, 3)

The resulting partial covariance scores were then correlated with the same
measurements with the same correlated methods.

Finally, we performed mediation analyzes to examine whether FIQ
mediates the relationships between brain morphology and cognitive beha-
viors within clusters. Linear models were used to estimate direct and indirect
effects, with adjustments for site and OoS scores of TCV. All brain mor-
phology and cognitive behavior variables were standardized to ensure
comparability among participants. The significance of indirect effects was
assessed using the Sobel test. As the brain abnormalities are detectable in the
early development™ before the emergence of autistic behaviors*, we built a
mediation model to examine the brain’s effect on cognitive behaviors. To
provide a more comprehensive account, we also analyzed the reverse
mediation model.

Detection of reproducible results between datasets

We applied the ABIDE-based classifier to an independent dataset from the
China Autism Brain Imaging Consortium®, which is a multicenter colla-
boration among clinical and research institutions in China. It is designed to
collect neuroimaging, demographic, and behavioral data on children and

adolescents with ASD. Diagnoses in the CABIC cohort were based on DSM-
IV, DSM-V, or ICD-11 criteria and validated using ADOS and ADI-R. The
dataset includes 2,656 participants, including 1,503 ASD individuals and
1,153 typically developing children. Detailed MRI acquisition parameters
are publicly accessible at https://php.bdnilab.com/sites/. There were in total
968 ASD males (4.56 + 1.69) and 526 (7.37 + 2.73) typically controls
included into analysis. The participant ID list is provided in the Supple-
mentary Data 2.

CABIC participants, aged 1 to 13 years, tend to exhibit more severe
ASD symptoms, resulting in lower variability within clusters. Although this
homogeneity is clinically valuable, it poses challenges in detecting subtle
brain-behavior relationships. In contrast, the ABIDE cohort provides
greater behavioral differences, enhancing the ability to identify nuanced
patterns in brain structure. By leveraging these complementary datasets, our
goal was to identify results that are reproducible across both cohorts. We
repeated the statistical, structural covariance, and correlation analyses on
CABIC cohort. However, the limited FIQ data in CABIC restricted the
replication of mediation analysis with sufficient statistical power. Therefore,
mediation analysis was conducted on the ABIDE cohort only.

In this study, we applied a SVM classifier trained on the ABIDE cohort
on the CABIC cohort. To evaluate the consistency between this transfer
approach and independent clustering approach, we replicated the identical
analytical process directly on ASD participants from CABIC cohort (See
details in the Supplementary Information). Optimal cluster solutions was
also two (Supplementary Fig. 5a). Among 968 participants, 929 (95.97%)
exhibited consistent cluster indices across both methods. This high con-
cordance highlights the robustness of our spectral clustering framework
across heterogeneous datasets.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The datasets analyzed in this study are publicly available. The ABIDE
dataset can be accessed from the Autism Brain Imaging Data Exchange
repository at https://fcon_1000.projects.nitrc.org/indi/abide. The CABIC
dataset is available upon request through the CABIC Data Sharing Initiative
at https://php.bdnilab.com. The key data we used in this study are the OoS
centile scores we calculated for each participant with ABIDE and CABIC. To
foster researcher on replication and extended exploration, we shared these
data through the Chinese Color Nest Data Community (https://ccndc.scidb.
cn/en) at Science Data Bank in China (https://www.scidb.cn/en/c/000133).
Data have been deposited into CSV files” at https://doi.org/10.57760/
sciencedb.24587, and they are accessible upon the requests according to the
instructions described on this page.

Code availability

All code used in the analyses is available at https://github.com/XueruFan/
ASD-Project. For detailed information on how to use these codes and
replicate this study step-by-step, please see the explanation in the READ-
ME.md file.
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