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ABSTRACT
Structural magnetic resonance imaging (MRI) quality is known to impact and bias neuroanatomical estimates and 
downstream analysis, including case-control comparisons, and a growing body of work has demonstrated the 
importance of careful quality control (QC) and evaluated the impact of image and image-processing quality. How-
ever, the growing size of typical neuroimaging datasets presents an additional challenge to QC, which is typically 
extremely time and labour intensive. One of the most important aspects of MRI quality is the accuracy of processed 
outputs, which have been shown to impact estimated neurodevelopmental trajectories. Here, we evaluate whether 
the quality of surface reconstructions by FreeSurfer (one of the most widely used MRI processing pipelines) inter-
acts with clinical and demographic factors. We present a tool, FSQC, that enables quick and efficient yet thorough 
assessment of outputs of the FreeSurfer processing pipeline. We validate our method against other existing QC 
metrics, including the automated FreeSurfer Euler number, two other manual ratings of raw image quality, and two 
popular automated QC methods. We show strikingly similar spatial patterns in the relationship between each QC 
measure and cortical thickness; relationships for cortical volume and surface area are largely consistent across 
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1.  INTRODUCTION

It is well established that magnetic resonance imaging 
(MRI) quality affects neuroimaging-derived neuroanatom-
ical measures (Gilmore et  al., 2021). MRI quality com-
prises multiple components, including head motion, 
imaging artefacts, and image processing outputs. Quality 
of the original image is often the starting point for quality 
control analyses as it affects all subsequent downstream 
analysis. Of particular concern when it comes to this raw 
image quality is in-scanner head motion, which has been 
consistently shown to affect estimates of brain structure 
(Alexander-Bloch et  al., 2016; Makowski et  al., 2019; 
Pardoe et  al., 2016; Reuter et  al., 2015; Savalia et  al., 
2017; Tisdall et al., 2016) as well as function (Goto et al., 
2016; Power et al., 2012; Satterthwaite et al., 2012; van 
Dijk et al., 2012) and connectivity (Bastiani et al., 2019; 
Baum et  al., 2018). For example, estimates of cortical 
thickness, surface area, and volume have consistent, 
regionally dependent relationships with motion 
(Alexander-Bloch et al., 2016; Pardoe et al., 2016; Reuter 
et al., 2015; Savalia et al., 2017). In addition to motion, 
other factors such as scanning artefacts, intensity inho-
mogeneities, and geometric and susceptibility-related 
distortions also impact image quality (Savalia et  al., 
2017). However, errors in image processing outputs and 
surface reconstructions further downstream also signifi-
cantly impact and distort estimates of neuroanatomy, 
and in particular neurodevelopmental trajectories 
(Ducharme et al., 2016; Rosen et al., 2018; Savalia et al., 
2017). Raw and processed output quality are, to an 
extent, interdependent, as accurate image segmentation 
and surface reconstruction relies on good raw image 
quality. However, image processing can fail or produce 
errors even in excellent quality images; thus, it is import-
ant to consider both aspects. Critically, image quality of 
all kinds, and head motion in particular, are highly cor-
related with demographic characteristics such as age, 
sex, as well as variables of interest such as diagnostic 
status in clinical cohorts (Alexander-Bloch et  al., 2016; 
Pardoe et al., 2016; Savalia et al., 2017), and there is evi-
dence that these biases also permeate case-control 

comparisons (Bedford et al., 2020; Yendiki et al., 2014). 
Although these issues are becoming more widely 
acknowledged, there is currently no “gold standard” of 
quality control (QC) methods, especially when it comes 
to evaluating image processing outputs. Detailed QC 
procedures are also rarely reported, making quantitative 
evaluations across studies difficult.

Few extensive and detailed manual quality control 
protocols have been explicitly published (Backhausen 
et al., 2016). While authors summarise QC procedures in 
Methods Sections or Supplementary Results (Bedford 
et al., 2020; Pardoe et al., 2016), often little detail is given. 
Some papers have provided and assessed detailed pro-
tocols for QC of image processing outputs, often of Free-
Surfer (Fischl, 2012), one of the most popular and widely 
used tools for cortical surface reconstruction. For exam-
ple, Visual QC (Raamana et al., 2021) and a QC protocol 
provided by the ENIGMA consortium (Protocol for Quality 
Control and Summary Statistics « ENIGMA, n.d.) provide 
detailed guidelines and a framework in which to view and 
rate images and their FreeSurfer outputs. While these 
protocols offer a comprehensive and useful tool for eval-
uating scans and surface reconstructions, they are time 
consuming, and hence may be impractical for very large 
datasets. This highlights the need for rigorous yet effi-
cient manual QC methods for outputs of FreeSurfer and 
similar processed images and tools.

The increasing sample sizes typically used in neuroim-
aging studies (Bethlehem et al., 2022; Di Martino et al., 
2017; Marek et al., 2022; Postema et al., 2019; Thompson 
et  al., 2014; Weiner et  al., 2015; Van Essen & Glasser, 
2016) is another barrier to implementing thorough and rig-
orous QC. Manual QC is both time and labour intensive, 
and it requires expert raters and/or extensive training of 
individuals to examine and assess both raw scans and 
post-processed outputs, as well as assessment of inter-
rater reliability (Ai et al., 2021; Bedford et al., 2020; Rosen 
et al., 2018). With samples routinely in the thousands or 
even tens of thousands, this may be impractical or infea-
sible. In recent years, various alternative, automated QC 
methods have been proposed. For example, FreeSurfer’s 

metrics, though with some notable differences. We next demonstrate that thresholding by QC score attenuates but 
does not eliminate the impact of quality on cortical estimates. Finally, we explore different ways of controlling for 
quality when examining differences between autistic individuals and neurotypical controls in the Autism Brain 
Imaging Data Exchange (ABIDE) dataset, demonstrating that inadequate control for quality can alter results of 
case-control comparisons.
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Euler number, a measure representing the topological 
complexity of the cortical surface reconstruction, is 
regarded as a good proxy for image quality, correlating 
highly with manual quality ratings, as well as regional 
measures of cortical thickness (Rosen et al., 2018). Other 
automated methods of quality assessment have com-
bined multiple automatically derived quality metrics such 
as detection of artefacts, background intensity distribu-
tion, and signal-to-noise ratio (Mortamet et  al., 2009; 
Shehzad et  al., 2015). Building on these tools, the now 
widely used MRIQC (Esteban et al., 2017) provides com-
prehensive automated reports of image quality, and pre-
diction of manual quality ratings, based on various (raw) 
image quality metrics, which also include measures of 
noise, entropy (indicative of motion), statistical properties, 
cortical features and extreme values, and specific arte-
facts. Another recently developed tool, Qoala-T (Klapwijk 
et al., 2019), focuses on post-processing quality, provid-
ing an automated binary include/exclude label to Free-
Surfer outputs, along with a probability score indicating 
the estimated scan quality. Another approach is to use 
“citizen science,” combined with manual expert ratings 
and machine learning, to generate thousands of QC rat-
ings, lessening the burden on researchers. This approach 
has resulted in the Swipes for Science initiative (swipes-
forscience.org), which crowd-sources QC ratings (binary 
pass/fail classification) of raw images, and also accounts 
for variations in quality of ratings by different raters 
(Keshavan et al., 2019). However, these raters are rarely 
experts, and receive minimal to no training on the ratings 
and criteria. The trade-off between efficiency and rigour 
when it comes to comparing automated to manual QC 
procedures is also still an open question which requires 
further investigation.

The lack of consensus and standardised methods is 
particularly problematic for large publicly available data-
sets, as it makes comparisons between different studies 
using the same datasets challenging and it is unclear to 
what extent inconsistencies in results are due to incon-
sistent QC methods or standards. This is a particularly 
salient issue in neurodevelopmental imaging, as inade-
quate image quality has been shown to impact findings 
(Ducharme et al., 2016; Savalia et al., 2017), and partici-
pants with neurodevelopmental conditions such as 
autism are more susceptible to image quality issues 
(often due to motion) than neurotypical individuals 
(Alexander-Bloch et  al., 2016; Bedford et  al., 2020; 
Pardoe et al., 2016). Without adequate QC, there is a high 
risk of spurious correlations or group differences, as well 
as true effects being obscured by motion or quality 

issues. Numerous studies have used the Autism Brain 
Imaging Data Exchange (ABIDE) (Di Martino et al., 2014, 
2017) to examine case-control differences related to 
autism, using both structural and functional measures 
(Bedford et al., 2020; Bethlehem et al., 2017, 2020; Floris 
et al., 2018; Haar et al., 2016; Khundrakpam et al., 2017; 
Kohli et  al., 2019; Nielsen et  al., 2014; Olafson et  al., 
2021; Ray et al., 2014; Schaer et al., 2015; Turner et al., 
2016; Valk et al., 2015). Although there is some conver-
gence of these findings, there are also conflicting and 
inconsistent findings between studies, which may in part 
be due to differences in QC procedures and thus differ-
ences in the final sample. The ABIDE Preprocessed 
repository  (http://preprocessed​-connectomes​-project​
.org​/abide/) includes quality ratings for ABIDE I based on 
the Quality Assessment Protocol (QAP) by Shehzad et al. 
(2015), though these do not provide a logical cut-off point 
or threshold. The issue of how extensively variations in 
quality impact findings related to neurodevelopmental 
and psychiatric conditions urgently warrants further 
investigation.

Given the need for systematic, rigorous, and reproduc-
ible QC methods, we aimed to develop a quick and effi-
cient yet thorough tool for QC of FreeSurfer surface 
reconstructions. Our FSQC tool allows for multiple ratings 
per participant that take only a few seconds, and also cap-
tures aspects of raw image quality, specifically motion, 
which is included in the overall rating of a participant. 
Thus, this tool can be used either as a stand-alone method 
that assesses some of the most important aspects of qual-
ity, or as a complementary method to other existing, per-
haps automated, QC tools. We then aimed to validate our 
FSQC metric against other QC methods in the ABIDE 
dataset, both manual and automated, to attempt to quan-
tify the trade-off and comparability between methods. 
Finally, we assessed the impact of QC on regional esti-
mates of cortical morphometry, and examined the interac-
tion between quality and diagnostic status in the context 
of autism. Importantly, we demonstrate that failing to 
account for quality can have subtle but significant impacts 
on apparent case-control differences, and thus has the 
potential to be an important confound in studies of neuro-
developmental or psychiatric conditions.

2.  METHODS

2.1.  Sample

The ABIDE dataset consists of neuroimaging, demo-
graphic, and clinical data from 2226 individuals (1060 

http://preprocessed-connectomes-project.org/abide/
http://preprocessed-connectomes-project.org/abide/


4

S.A. Bedford, A. Ortiz-Rosa, J.M. Schabdach et al.	 Imaging Neuroscience, Volume 1, 2023

Fig. 1.  FSQC image generation workflow. From left to right: T1 images were processed with FreeSurfer 6.0.1 and 
displayed in FreeView with pial and white matter surfaces overlaid on the T1 image (both hemispheres). Screenshots were 
automated and taken at predefined, consistent coordinates, for a total of 10 images per participant. Images were then 
displayed and rated in the Image-Rating app, and scores were averaged across all 10 images for each participant.

autistic individuals and 1166 neurotypical controls), aged 
5-64 years (1804 assigned-males-at-birth, 422 assigned-
females-at-birth). The ABIDE repository includes two 
waves of data aggregation (ABIDE I and II), from a total of 
24 international sites. Participant demographics and 
acquisition information have been previously described 
in detail (Di Martino et al., 2014, 2017).

2.2.  FreeSurfer QC method and generation of images

2.2.1.  Processing with FreeSurfer

All T1-weighted structural scans were processed with 
FreeSurfer 6.0.1 (see Di Martino et al. (2014, 2017) for 
details on ABIDE acquisition). A subset of 50 participants 
were also processed with FreeSurfer 7.1 for comparison 
with newer methods. Cortical parcellations were derived 
using the Glasser (Glasser et  al., 2016) and Desikan-
Killiany (Desikan et al., 2006) atlases. Glasser parcella-
tions were derived for each participant by resampling the 
Glasser parcellation template to FreeSurfer fsaverage, 
and from there back to individual subject space, using 
FreeSurfer’s surface-based registration. Recent work 
has demonstrated that atlases with higher-dimensional 
cortical representation are able to capture a higher pro-

portion of trait variance accounted for by the cortical 
measures (Fürtjes et al., 2023). Thus, we chose to pres-
ent our main results using the Glasser parcellations, to 
provide a more fine-grained and detailed profile of spa-
tial relationships. However, because the Glasser parcel-
lations are multimodally derived, we also conducted all 
analyses using the Desikan-Killiany parcellations, a 
structurally derived atlas. In order to enable comparison 
with other studies that use the Desikan-Killiany parcella-
tions, and to allow comparison of results between par-
cellation schemes, these results are also presented in 
the Supplementary Materials.

2.2.2.  Generation of FSQC images

QC images were generated by overlaying the FreeSurfer-
derived cortical surface boundaries on the participant’s 
T1 scan in FreeSurfer’s FreeView visualisation tool, and 
using the FreeView Screenshot function to generate 
screen captures at 10 different views and slices of the 
brain. The 10 slices (3 axial; 3 coronal; 4 sagittal; see 
Fig.  1) were chosen by selecting views which give a 
good representation of the whole brain, based on man-
ual inspection of a few images. Slices were taken at 
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intervals of roughly 20, without being too near to the 
edges of the brain as this may result in some partici-
pants having blank images if their heads are in a slightly 
different position. Three slices each were selected for 
axial and coronal views, at roughly one quarter intervals 
across the brain, but four were selected for the sagittal 
view to avoid having images of the mid-section of the 
brain, and so that two views per hemisphere are cap-
tured. Based on the images that were manually reviewed 
slice by slice, this appears to give a good representation 
of quality of the raw image and reconstruction. This pro-
cess was then automated in a virtual server window, 
with consistent coordinates specified for each partici-
pant for the 10 screenshots (code shared below). For 
comparison and to confirm that 10 slices is sufficient to 
get a good representation of the quality of the whole 
image, we also generated FSQC images for two partici-
pants of 20 slices instead of 10 (Supplementary Meth-
ods 1.1). We also note that the code for FSQC image 
generation is easily adaptable; thus, researchers can 
easily increase (or decrease) the number and position of 
slices if they wish to.

Prior to rating, each image was renamed using the MD5 
message digest algorithm and images were randomly 
shuffled so ratings were not biased by other images from 
the same participant appearing in sequence. Participants 
were not divided by site, so as to also not be influenced by 
any particularities at a specific site. Images were then 
viewed in the Image-Rating QC application (https://github​
.com​/sbedford0​/FSQC​/tree​/main​/imageratingQCApp), 
and assessed for accuracy of the cortical reconstruction 
(grey-white matter and grey matter-pial surface boundar-
ies), as well as presence of motion in the raw T1 image on 
which the surfaces were overlaid. Each image (10 per par-
ticipant) was rated individually on a scale of 1-4 (good - 
bad), corresponding to the following categories: good (1), 
minor error (2; i.e., often involving misestimation of bound-
aries restricted to one or two specific regions), visible 
motion (3; defined as ringing or rippling artefact visible at 
any point in the image, or blurring, resulting in unclear 
grey/white matter boundaries and reduced clarity of the 
image), and bad (4), indicating very poor surface recon-
struction with multiple errors or large areas of missing cor-
tex. “Bad” is rated as worse than “motion” to reflect the 
fact that some small amount of motion, confined to a small 
area of the image, may not render it unusable. See https://
www​.protocols​.io​/view​/fsqc​-protocol for images, detailed 
criteria, and examples of each score. Outputs from the 
Image-Rating app were recorded and downloaded in a csv 
file. Categorical ratings were then converted to the corre-

sponding numerical rating (i.e., 1-4), and averaged across 
all 10 images for each participant, to give a final continu-
ous score between 1 and 4 per participant. Thus, these 
scores provide a quality rating reflecting the accuracy of 
the FreeSurfer surface reconstructions as well as some 
indication of the presence of motion in the raw T1 image. 
We note that it is possible for a significant artefact or error 
to be visible in one slice only and thus still result in a very 
good score, though in our experience this is uncommon. 
We also maintain that the score would still be representa-
tive of the overall good quality of reconstruction; however, 
if a researcher would like to be more stringent, they are 
easily able to set their exclusion threshold accordingly, or 
to exclude participants based on individual image ratings.

2.3.  Statistical analysis

2.3.1.  FSQC inter-rater reliability

Two raters (S.A.B. and R.A.I.B.) rated the entire dataset, 
and an average of the two scores was taken for each 
participant. To ensure reasonable inter-rater reliability, 
raters first rated a subset of 20 participants (200 images), 
which were compared. Scores were averaged across the 
10 images for each participant, and for any participant 
that had a discrepancy greater than 1 between the two 
raters, the images were discussed and a consensus was 
agreed upon before moving on to the rest of the dataset. 
This consensus rating was also used to clarify any dis-
crepancies or things that were not clear in the image rat-
ing protocol. To assess inter-rater reliability of the method 
and protocol across multiple raters, 4 additional raters, 
for a total of 6 raters (S.A.B., R.A.I.B., A.O.-R., J.S., 
A.F.A.-B., J.M.S.), assessed a subset of 50 participants 
(500 images); Spearman’s correlations and two-way ICC 
for agreement were calculated across all raters, on the 
average score for each participant.

The first main analysis (examining the effect of FSQC 
on cortical thickness, see below) compared both individ-
ual rater’s scores, as well as the average score across all 
raters to ensure consistency (Supplementary Methods 
1.2). For all subsequent analyses using FSQC, the aver-
age scores between the two raters were used, to mini-
mise the potential of bias by one specific rater and 
increase generalisability of our results. The same 50 par-
ticipants used to assess inter-rater reliability were also 
processed using FreeSurfer 7.1. FSQC images were gen-
erated and rated by rater S.A.B., and FSQC ratings and 
Euler number were compared to the 6.0 outputs (Supple-
mentary Methods 1.3).

https://github.com/sbedford0/FSQC/tree/main/imageratingQCApp
https://github.com/sbedford0/FSQC/tree/main/imageratingQCApp
https://www.protocols.io/view/fsqc-protocol
https://www.protocols.io/view/fsqc-protocol
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2.3.2.  Timing of ratings

The FSQC tool provides a “deliberation time” in millisec-
onds for each image. In order to calculate an estimate of 
the time needed to score one participant, we calculated 
the median score per participant per rater. First, we 
removed any outliers at >5 median absolute deviations, to 
remove lengthy times due to the rater getting distracted or 
taking a break during ratings. Then, for each rater individ-
ually, we took the median score for each participant across 
the 10 images. Finally, we took the median score across 
participants for each rater, to give a representative range 
and average of rating times per participant.

2.3.3.  Relationship between different QC metrics

First, we sought to validate our FSQC method by exam-
ining the relationship between FSQC scores (averaged 
across 10 images per participant, and two raters) and 
other QC metrics. These included the FreeSurfer-derived 
Euler number (Rosen et al., 2018) (a measure of topolog-
ical complexity; lower numbers indicate better quality); a 
manual score assessing the presence and amount of 
motion in each image (“Motion QC”; raters S.A.B., 
M.M.C., S.T. (Bedford et  al., 2020), see https://github​
.com​/CoBrALab​/documentation​/wiki​/Motion​-Quality​
-Control​-%28QC%29​-Manual); and another manual rat-
ing of overall image quality which was derived from and 
built upon “Motion QC” (“PondrAI QC”; raters M.C., 
G.A.D., see https://github​.com​/pondrai​/PondrAIQC). We 
also included comparisons to two popular automated 
QC tools: MRIQC, an automated prediction of raw image 
quality, and Qoala-T, an automated classification of 
FreeSurfer output quality. Qoala-T was run according to 
the instructions at https://github​.com​/Qoala​-T​/QC. Qoa-
la-T provides a binary classification of include or exclude, 
as well as a certainty score (0-100), with scores closer to 
0 or 100 indicating higher certainty of the binary deci-
sion. We used the certainty score as a continuous mea-
sure to compare against FSQC and the other quality 
metrics. For MRIQC, we used the MRIQC Quality Met-
rics which are publicly released for the ABIDE II dataset 
and available for download on the ABIDE website at 
http://fcon​_1000​.projects​.nitrc​.org​/indi​/abide​/abide​_II​
.html​#:~:text​=ABIDE%20II%20MRI%20Data%20Qual-
ity%20Metrics. Since multiple MRIQCquality metrics are 
provided, and there is not one overall score intended to 
be used for thresholding, we assessed correlations with 
each metric, and present these in a correlation matrix. 
Finally, because MRIQC was only released with the 

ABIDE II repository, we also included a comparison to 
the Quality Assessment Protocol (Shehzad et al., 2015) 
metrics released with ABIDE Preprocessed (http://pre-
processed​-connectomes​-project​.org​/abide/) for ABIDE 
I. These analyses and results are presented in the Sup-
plementary Materials (Supplementary Methods 1.4).

Spearman correlations were run to assess the rela-
tionship between FSQC and each other metric.

2.3.4.  Demographic correlations

Since demographic factors are related to image quality 
(Alexander-Bloch et  al., 2016; Bedford et  al., 2020; 
Pardoe et al., 2016), we next investigated these relation-
ships in our dataset. Of particular interest were age, sex-
assigned-at-birth (hereafter “sex”), and diagnosis, as 
these variables are especially relevant to neuroimaging 
studies of autism and have been shown by previous work 
to correlate with image quality, and motion specifically 
(Alexander-Bloch et al., 2016; Pardoe et al., 2016; Reuter 
et al., 2015). To account for site differences, linear mixed-
effects models were used to examine the impact of age, 
a quadratic term for age (age2), sex and diagnosis (with 
site as a random effect) on all quality metrics separately 
(FSQC, Euler, Motion QC, PondrAI QC, Qoala-T).

2.3.5.  Impact of QC on cortical morphometry

To examine and quantify the impact of image quality, as 
measured by all QC metrics, on different neuroanatomi-
cal measurements, we assessed the relationship between 
each QC measure and global neuroanatomical measure, 
including total cortical and subcortical grey matter vol-
umes (cGMV and sGMV), total brain volume (TBV), total 
white matter volume (WMV), total ventricular volume, and 
mean cortical thickness. Linear mixed-effects models 
were used for all analyses, with site as a random factor, 
to account for inter-site variability and differences in the 
ABIDE dataset.

As previous work has demonstrated spatially dependent 
relationships with quality (Alexander-Bloch et  al., 2016; 
Pardoe et al., 2016; Reuter et al., 2015), we next examined 
regional effects on cortical thickness (CT), surface area 
(SA), and cortical volume (CV). Relationships with subcorti-
cal phenotypes were not assessed as the surface recon-
structions being rated in the FSQC tool include only the 
cortical surface boundaries. Analyses were initially run on 
all participants (i.e., no exclusions), to examine the relation-
ship between different types of quality and cortical mor-
phometry across the whole spectrum of quality. For these 

https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-%28QC%29-Manual
https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-%28QC%29-Manual
https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-%28QC%29-Manual
https://github.com/pondrai/PondrAIQC
https://github.com/Qoala-T/QC
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html#:~:text=ABIDE%20II%20MRI%20Data%20Quality%20Metrics
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html#:~:text=ABIDE%20II%20MRI%20Data%20Quality%20Metrics
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html#:~:text=ABIDE%20II%20MRI%20Data%20Quality%20Metrics
http://preprocessed-connectomes-project.org/abide/
http://preprocessed-connectomes-project.org/abide/
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analyses, linear mixed-effects models were run for each 
parcellation across the brain, separately for CT, SA, and CV. 
All regression models included QC metric, age, age2, and 
sex as fixed effects, and site as a random effect, with CT/
SA/CV as the dependent variable, for each region. Partial 
correlations were calculated to quantify the strength of the 
association between QC metric and neuroanatomical mea-
sure (e.g., FSQC and CT; motion QC and CV, etc). Because 
Qoala-T was the only metric in which higher values denote 
better (rather than poorer) quality, we multiplied each partial 
correlation for Qoala-T by -1 so that the direction of the 
relationship matched the other QC measures, and relation-
ships with cortical measures could easily be compared 
across metrics. Results were corrected for multiple com-
parisons using the false discovery rate (FDR) across parcel-
lations in all analyses. For subsequent analyses, we focus 
on FSQC, our newly developed quality metric, and Euler, a 
commonly used automated method.

Main analyses were run using Glasser parcellations to 
provide a more fine-grained comparison, with Supple-
mentary Analyses also run using Desikan-Killiany parcel-
lations, for comparison with previous work (Supplementary 
Methods 2.1). To ensure we were adequately accounting 
for site effects, the main analyses were repeated using a 
random-effects meta-analysis for comparison, and to 
assess heterogeneity of results across sites (Supplemen-
tary Methods 2.2). We also attempted to replicate these 
analyses in multiple datasets. These included a larger, 
more representative dataset of 74,647 individuals (that 
has been previously used (Bethlehem et al., 2022)), and 
multiple publicly available neurodevelopmental datasets 
(the Child Mind Institute’s (CMI) Healthy Brain Network, 
the ADHD200 dataset, and the Province of Ontario Neu-
rodevelopmental (POND) Network; Supplementary Meth-
ods 2.3). Finally, we conducted a variance partitioning 
analysis (Hoffman & Schadt, 2016) to evaluate the relative 
contribution of image quality to the total variance 
explained, compared to factors such as diagnosis, age, 
sex, and site (Supplementary Methods 2.4).

2.3.6.  Exclusion/thresholding analyses

Quality control scores are often used as a way to exclude 
data of poor quality; for example, previous studies using 
the Euler number as a QC metric recommend a study-
specific threshold (Rosen et  al., 2018). To evaluate the 
impact of different quality thresholds on the relationship 
with cortical morphology and existence of group-level 
differences, and to assess the extent to which results 
were driven by participants with the worst or more 

extreme image quality, we conducted a thresholding 
analysis, examining the impact of quality (FSQC and 
Euler number) at cut-offs of varying stringency. All analy-
ses were conducted using linear mixed-effects models, 
with site as a random factor.

For FSQC, we chose score thresholds in increments 
of 0.5 points (3, 2.5, 2, 1.5). The same models and anal-
yses described above were re-run after excluding partic-
ipants at each of these thresholds, for each cortical 
phenotype. For Euler number, there were less obvious 
cut-off points than for FSQC, and there is no universally 
accepted threshold of good versus poor quality data. 
Therefore, we used median absolute deviations (MAD) to 
determine various thresholds for these analyses. The 
range of Euler number in our dataset was 7-775 (mean = 
129.7; median = 103.0; standard deviation = 99.4). The 
relationship between Euler and each cortical phenotype 
was assessed after thresholding at 1, 2, and 3 MADs, 
and half points in between (corresponding to Euler num-
bers of 139, 174, 210, 245, 281, and 317). Due to the 
significant differences and variability between sites, Sup-
plementary Analyses were also conducted applying 
MAD-based cut-off points calculated and applied indi-
vidually per site, rather than across the whole sample 
(Supplementary Methods 3.1).

Additional sensitivity analyses were performed, includ-
ing comparing high and low quality based on a median 
FSQC split, and thresholding based on the top percent-
age of scores (applied to the whole sample and per site) 
(Supplementary Methods 3.2-3.3).

2.3.7.  Interaction between image quality and diagnosis

As image quality differs by diagnostic status and impacts 
neuroanatomical estimates (Alexander-Bloch et al., 2016; 
Pardoe et al., 2016; Reuter et al., 2015), it is likely that inad-
equate accounting for quality will lead to inaccurate con-
clusions relating to diagnostic differences. To this end, we 
examined differences in cortical morphometry between 
autistic individuals and controls with different methods of 
accounting for quality, and at different quality thresholds. 
First, we examined group differences in CT, SA, and CV 
without accounting for quality, using linear mixed-effects 
models with diagnosis, age, age2, and sex in the model, 
and site as a random factor. Next, the same models were 
run with the addition of FSQC or Euler number as a covari-
ate to assess the impact of controlling for quality, as well as 
thresholding by both FSQC (at 2.5) and Euler (at 2 MAD).

Supplementary Analyses for CT replicated these 
results in the CMI and POND datasets (Supplementary 
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Methods S4.1). Further Supplementary Analyses exam-
ined diagnostic effects after thresholding by FSQC or 
Euler at various cut-off points (FSQC: 3, 2.5, 2, and 1.5; 
Euler: 1, 2, and 3 MADs; Supplementary Methods 4.2), as 
well as the effect of diagnosis on CT after thresholding by 
FSQC and also controlling for Euler (Supplementary 
Methods 4.3). Finally, we examined the interaction 
between diagnosis and FSQC or Euler on CT (Supple-
mentary Methods 4.4).

3.  RESULTS

3.1.  Inter-rater reliability

For the subset of 50 participants, the ICC was moderate, 
at 0.68 for all 6 raters, including the two more experi-

enced raters. Spearman correlations calculated between 
each pair of raters ranged from 0.68-0.86 (see Fig. 2A). 
For the whole dataset, the inter-rater Spearman correla-
tion was 0.63 between raters S.A.B. and R.A.I.B.

Results of the impact of FSQC on CT were nearly 
identical when using each rater’s scores separately 
(S.A.B. and R.A.I.B.), and the average of the two scores 
(see Supplementary Figure S1.2). FSQC ratings and Euler 
number were largely consistent and highly correlated 
with FS7.1 outputs (Supplementary Results S1.3).

3.2.  Timing of ratings

The median time to rate one participant (10 images) was 
20.4 seconds across all 6 raters (range: 5.0-53.7 seconds) 

Fig. 2.  (A) Inter-rater correlation matrix for FSQC ratings for a subset of 50 participants (500 images). All pairs of raters 
were significantly correlated with each other between 0.7-0.8 rho. (B) Correlations between different QC metrics. Because 
Qoala-T is reverse coded relative to the other metrics, the absolute values are shown for the Qoala-T correlations. All 
measures were significantly correlated with each other. (C) Relationship between FSQC and age. A significant effect of 
age was observed in which younger participants had lower quality ratings. (D) FSQC score distributions by site. There was 
significant variability in quality across sites. (E) Box and violin plot of FSQC distributions for males and females. There was 
no significant sex difference in FSQC. (F) Box and violin plot of FSQC distributions by diagnosis. Autistic participants had 
significantly higher FSQC scores (i.e., lower image quality) relative to controls (p < 0.0001, d = -0.27). Box plots represent 
the interquartile range, the middle line denotes the median, and the black dot represents the mean. The curves of the violin 
plots show the distribution and density estimate of FSQC scores for each group.
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and 7.1 seconds across our two main, trained raters (range 
5.0-9.3 seconds).

3.3.  Relationship between different QC metrics

FSQC was significantly correlated with all other mea-
sures, with the exception of MRIQC’s EFC and Cortical 
contrast. Correlations with all metrics except MRIQC 
were moderate (Euler number (rho = 0.57, p < 0.0001); 
Motion QC (rho = 0.65, p < 0.0001); PondrAI QC (rho = 
0.62, p < 0.0001); Qoala-T (-0.48, p < 0.0001)). (Note that 
the correlation between FSQC and Qoala-T is negative 
because higher values denote lower quality in FSQC but 
higher quality in Qoala-T.) Correlations with MRIQC qual-
ity metrics ranged from rho =  -0.03-0.16. Pairwise cor-
relations are shown in Figure 2B. The QAP IQMs showed 
similarly weak correlations with manual QC methods and 
Euler number (Supplementary Figure S1.4).

3.4.  Demographic correlations

We assessed the relationship between each metric and 
demographic variables previously reported to be highly 
correlated with image quality (Fig. 2C-F). For all quality 
measures, autistic participants had significantly lower 
image quality relative to controls (all p < 0.01; Cohen’s 
d = -0.14 - -0.29). For all metrics, there was also a signif-
icant effect of age and age2 (p < 0.0001). However, when 
we examined the relationship between age and quality in 
young and old groups after performing a median split, 
both groups showed a negative relationship, reflecting 
lower image quality in younger participants, consistent 
with previous studies (Alexander-Bloch et  al., 2016; 
Pardoe et al., 2016). For motion QC (p = 0.004, Cohen’s 
d = 0.16) and Qoala-T (p = 0.0001, Cohen’s d = -0.23) 
only, there was a significant effect of sex, where males 
had significantly lower quality scans than females. To 
assess whether this was due to differences in brain or 
head size, we repeated these analyses with estimated 
total intracranial volume (eTIV) in the model. This did not 
change the results in any model. However, eTIV had a 
significant effect on Euler number and Qoala-T 
(p  <  0.001), but not any of the manual metrics. Image 
quality, across all metrics, also differed significantly by 
site (p < 0.0001).

3.5.  Impact of QC on cortical morphometry

FSQC was significantly but weakly correlated with global 
brain measures of total cortical GMV, WMV, subcortical 

GMV, and TBV at a Bonferroni-corrected threshold of 
p < 0.008 for six comparisons (rho = -0.07 - -0.16), but 
not with mean CT or ventricular volume (see Supplemen-
tary Table  S1 for all correlations). Regional analyses 
revealed significant associations across much of the cor-
tex for all cortical phenotypes and QC metrics, passing 
5% FDR (partial r = -0.49-0.43). Associations were largely 
negative, denoting apparent decreases in cortical mea-
sures with lower quality (higher scores), though strong 
positive relationships (increased measures with lower 
quality) were observed in some regions and analyses. 
Each phenotype showed distinct spatial relationships 
with quality; however, spatial patterning across the cor-
tex was, for the most part, strikingly similar between met-
rics within each phenotype, in particular for cortical 
thickness. This was somewhat less true for SA and CV; 
spatial patterning was extremely similar across the three 
manual ratings, with slight differences observed for Euler 
number, but for Qoala-T, largely positive relationships 
were observed. Despite this, in the unthresholded maps, 
some spatial homology can still be observed across met-
rics, in particular with Euler. Results of regional analyses 
are shown in Figure 3, showing partial r values thresh-
olded for significant regions (surviving 5% FDR). For 
maps of all (including non-significant) partial r values 
across the cortex, see Supplementary Figure S2.

Of the three cortical phenotypes, the strongest associ-
ations overall were observed for CT, and as such were the 
main focus of subsequent analyses (with CV and SA 
results reported in Supplementary Materials). Spatial 
maps for CT were strikingly similar across all five metrics. 
The strongest negative correlations between CT and 
image quality (across metrics) were observed in lateral 
superior frontal (including precentral gyrus), parietal, and 
inferior temporal regions, with widespread weaker, but 
still significant, negative correlations across much of the 
frontal, parietal, and temporal cortices. Significant posi-
tive correlations were observed in the medial occipital 
and ventromedial prefrontal cortices for all metrics, as 
well as in the postcentral gyrus (Fig. 3).

The strongest significant negative correlations for sur-
face area were observed in inferior (medial and lateral) 
frontal and temporal cortices, as well as the medial 
occipital cortex. Correlations and spatial patterning were 
again mostly consistent across QC metric, with the 
exception of a larger number of positive correlations, 
and slightly fewer significant correlations overall, 
observed for Euler number, and to an even greater extent 
in Qoala-T. For Motion QC and PondrAI QC, almost no 
positive correlations reached significance, and in FSQC, 
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only two or three disparate regions (including the post-
central gyrus) showed positive significant correlations. 
For Euler number, by contrast, significant positive cor-
relations were observed in regions including the pre- and 
postcentral gyrus, medially and laterally, as well as the 
superior temporal gyrus, and for Qoala-T positive cor-
relations were observed across much of the frontal and 
parietal lobes (Fig. 3).

Spatial patterning for cortical volume was again very 
similar across metrics, with slight differences in Euler, and 
with the exception of Qoala-T. The medial occipital cortex 

was significantly positively correlated with QC in FSQC, 
Euler, and Qoala-T, but did not reach significance in the 
other two metrics, though subthreshold correlations were 
also positive. For the three manual metrics, significant 
but weak negative correlations were observed across 
much of the cortex, and most strongly in inferior temporal 
and frontal regions, and the precentral gyrus. For Euler 
and Qoala-T, less regions met significance, including 
large areas of the frontal and parietal cortices. Most sig-
nificant correlations were still negative for Euler, though 
positive correlations were observed in the postcentral 

Fig. 3.  Associations between QC metrics and regional cortical morphometry. There was a significant relationship between 
image quality and neuroanatomical estimates across much of the cortex for all metrics and phenotypes. Relationships were 
largely negative and strongest for cortical thickness. Spatial patterning of results was highly similar across most metrics, 
with the exception of SA and CV for Qoala-T, which showed largely positive relationships, in contrast to the other metrics.
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gyrus, medial prefrontal cortex, and left hippocampus. 
For Qoala-T, significant positive correlations were also 
observed in the superior temporal cortex, postcentral 
gyrus, and medial parietal regions. Significant negative 
correlations with Qoala-T were observed in inferior tem-
poral areas, in line with the other metrics (Fig. 3).

Desikan-Killiany parcellations yielded consistent 
results in almost all regions, with the exception of a few 
areas in which there was a change from positive to nega-
tive effect size in adjacent regions in the Glasser parcel-
lations (e.g., postcentral gyrus, V1), which were obscured 
by the coarser parcellations (Supplementary Results 2.1). 
Results of the meta-analytic technique also displayed 
consistent spatial patterning. Our replication analyses 
also yielded largely consistent results across datasets 
(Supplementary Results S2.2-2.3). The variance parti-
tioning analysis indicated FSQC and Euler contributed a 
relatively small portion of the variance, but larger than 
diagnosis (Supplementary Results S2.4).

Almost all analyses showed the strongest effects for 
cortical thickness, consistent with previous work sug-
gesting that CT is more susceptible than other cortical 
estimates to impacts of image quality and motion (Pardoe 
et  al., 2016). Consequently, and for clarity, subsequent 
analyses will focus primarily on the relationship between 
CT and image quality. For cortical surface area and vol-
ume results, see Supplementary Results.

3.6.  Exclusion/thresholding analyses

We next examined the impact of different levels of QC 
thresholding stringency on the relationship between 
quality and cortical morphometry, based on FSQC and 
Euler number. For CT, after excluding only scans with the 
worst FSQC scores (3 and above), effect sizes for the 
association with FSQC were attenuated, but significant 
associations were still observed across much of the cor-
tex, following the same spatial patterns as the non-
thresholded analysis. Effect sizes were further attenuated, 
but with similar patterning (strongest results retained) 
after excluding those with scores higher than 2.5. After 
excluding at scores of 2 and 1.5, few regions maintained 
significant associations with FSQC (inferior frontal and 
temporal regions, and superior frontal cortex and precen-
tral gyrus; Fig. 4).

In the Euler MAD-based thresholding analysis, we 
observed similar but slightly less stark differences 
between cut-off points than with FSQC. For CT, an atten-
uation of effect size was still observed, but was some-
what more gradual and to a lesser extent than when 

using FSQC. The maps for cut-off points of between 2-3 
MAD looked similar, with more of a substantial drop off in 
significant regions after a cut-off of 1 MAD (Fig. 4). Addi-
tional sensitivity analyses all yielded similar results (Sup-
plementary Figures 3.1-3.3).

SA and CV showed a more stark and immediate drop 
off in significant effects in the FSQC thresholding analy-
ses (Supplementary Figure  S3.4). Interestingly, in the 
Euler thresholding analyses for SA and CV, rather than an 
attenuation of significant effects, we observed a change 
in direction, such that associations with Euler number 
went from mostly negative to mostly positive after thresh-
olding (Supplementary Figure 3.5).

3.7.  Interaction between image quality and diagnosis

There were minimal differences in cortical morphometry 
between autistic and neurotypical controls when not 
accounting for image quality. Autistic individuals had 
greater CT in the medial primary visual cortex (V1), and a 
small region in the medial parietal lobe relative to con-
trols, and thinner cortex in a few small regions in the left 
superior frontal and inferior prefrontal cortex. The effects 
of controlling for FSQC and Euler number were similar. In 
these analyses, right V1 was no longer significant; nor 
were any of the regions which had shown thinner cortex 
in autism, with the exception of the inferior prefrontal cor-
tical region. Additionally, after controlling for either QC 
metric, additional significant effects (greater CT in autism 
relative to controls) were observed in the superior tempo-
ral gyrus. Though not many regions survived FDR in any 
analysis, when examining subthreshold results, we noted 
that most of the effects that were diminished or disap-
peared after controlling for quality were those in which 
apparent thinner cortex in autistic individuals was 
observed in the original analysis, suggesting that these 
results may have been an artefact of poor image quality 
(in the autistic group in particular).

Results were very similar, although not identical, after 
applying QC thresholding (for Euler or FSQC) instead of 
simply controlling for quality. Results were essentially the 
same whether applying a cut-off based on FSQC or Euler 
at a similar stringency (FSQC cut-off of 2.5 [N = 1727]; 
Euler threshold of 2 MAD or 245 [N = 1689]): only regions 
in the bilateral medial occipital cortices, and right medial 
parietal cortex remained significant, all of which were 
thicker in autism than controls. Again, all regions with 
thinner cortex in autism were no longer significant after 
thresholding (Fig. 5). Replication analyses for CT in the 
POND and CMI datasets yielded largely overlapping 
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results and impact of QC to ABIDE (Supplementary 
Results S4.1). Results of the main analyses did not 
change substantially when applying thresholds of differ-
ent levels of stringency based on FSQC or Euler, though 
they were slightly further attenuated at each cut-off point 
(Supplementary Results S4.2).

Combining the two approaches by applying a threshold 
based on FSQC while also controlling for Euler did not 

drastically change the results, though some additional 
regions showed significant associations (Supplementary 
Figure S4.3). The interaction between quality and diagnosis 
suggested a stronger relationship between quality and cor-
tical thickness in the autistic group than controls (Supple-
mentary Figure S4.4). Only very minimal group differences 
in SA and CV were observed, both with and without 
accounting for image quality (Supplementary Results S4.5).

Fig. 5.  Impact of autism diagnosis on cortical thickness (Cohen’s d) without accounting for image quality (A), when 
controlling for FSQC (B) or Euler (C), and thresholding by FSQC (D) and Euler (E). Significant regions passing 5% FDR 
are shown with a black border; other regions are subthreshold (i.e., not surviving FDR) differences. Most results indicate 
thicker cortex in autism relative to controls; results do not change drastically with quality control, but most negative 
associations between diagnosis and CT (autism < controls) disappear. Significantly thicker cortex in the superior temporal 
gyrus, which has previously been reported in autism, is observed only when controlling for quality (FSQC or Euler).
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4.  DISCUSSION

Our results demonstrate significant, widespread associa-
tions between image quality and cortical morphometry 
across the brain, which are largely consistent across mul-
tiple QC metrics. These QC-morphometry interactions 
persist even after excluding participants with lower image 
quality, and have marked effects on case-control evalua-
tions. We have outlined several ways to evaluate and cor-
rect for the issue of image quality and empirically show 
that these can improve the robustness of clinical neuro-
imaging findings.

4.1.  The FSQC tool enables fast and robust evaluation of image 
quality in a scalable manner

Our FSQC tool is easy and quick to implement even for 
large datasets, while still being rigorous and thorough. 
The generation of multiple images per participant, at mul-
tiple orientations and slices across the cortex, allows for 
a thorough examination of different views without the 
time-consuming process of individually opening and 
scrolling through each scan slice by slice. The average 
rating time per participant of ~20 seconds is also compa-
rable or faster to other published QC protocols (Raamana 
et  al., 2021), and we demonstrate that these times are 
considerably faster for more experienced raters. We also 
demonstrate reasonable inter-rater reliability, which is in 
line with that found by previous studies (Esteban et al., 
2017; Klapwijk et al., 2019; Raamana et al., 2021), and 
demonstrate that different raters do not affect down-
stream analysis. Importantly, though FSQC primarily 
assesses quality of FreeSurfer post-processing outputs 
and surface reconstructions, it also takes into account 
some aspects of raw image quality (primarily motion). 
Thus, it can be used either as a complementary tool to 
existing (perhaps automated) methods, or as a stand-
alone tool, simplifying the QC process. Finally, we have 
shared both our FSQC tool and protocol, and completed 
image ratings for ABIDE, with the neuroscience commu-
nity. This could help to save other researchers unneces-
sary time and effort, and help to improve consistency and 
reproducibility across studies.

4.2.  Image quality has largely consistent spatial relationships with 
cortical morphometry

We demonstrated high correlations and similarity of spa-
tial maps between metrics. This was particularly true for 
cortical thickness, which also showed the strongest 

associations. Notably, associations for the automatically 
generated Euler number and Qoala-T were almost iden-
tical to the three manual ratings for cortical thickness, 
but showed some divergences for cortical surface area 
and volume. More research is needed to better under-
stand how different QC properties intersect with thresh-
olding or case-control analysis. Here, we focused on 
FreeSurfer outputs; future studies may want to further 
explore thresholding based on automated methods such 
as Qoala-T and MRIQC in multiple datasets (Nakua 
et al., 2023), as well as how different metrics intersect 
with sample selection and bias. The striking spatial sim-
ilarity of FSQC effects with those of motion (both here 
and in previous work (Alexander-Bloch et  al., 2016; 
Pardoe et  al., 2016; Reuter et  al., 2015)) confirm that 
motion is one of the principal sources to impact image 
quality. With our ratings we provide a comprehensive 
evaluation of image quality, primarily accounting for the 
quality of the cortical reconstruction, another important 
source of bias (Ducharme et al., 2016), but also taking 
motion into account. We also demonstrate largely con-
sistent effects for cortical thickness across multiple 
datasets. For cortical thickness, associations with FSQC 
and Euler were spatially highly similar across four differ-
ent neurodevelopmental datasets, though they differed 
in the strength of correlations and number of regions 
reaching significance (after FDR correction). Some rea-
sons for these differences could include sample compo-
sition, demographic differences in cohorts, or differences 
in scanner type and acquisition parameters. However, 
we note that the most affected regions, and the direc-
tionality of effects, is largely consistent, indicating that 
the conclusions drawn here are likely to be generalisable 
across datasets.

Consistent with previous studies (Alexander-Bloch 
et al., 2016; Ducharme et al., 2016; Gilmore et al., 2021; 
Pardoe et  al., 2016; Reuter et  al., 2015; Rosen et  al., 
2018), we observed largely negative correlations between 
all three cortical phenotypes and image quality in most 
brain regions, with a few exceptions. In the case of 
motion, this is thought to be primarily due to reduced 
grey-white matter contrast and blurring of the cortical 
boundary, resulting in incorrect surface reconstruction 
and, typically, underestimation of cortical thickness 
(Pardoe et al., 2016; Reuter et al., 2015). Inaccurate sur-
face reconstruction seems to have a similar effect 
(Ducharme et al., 2016). Cortical volume and surface area 
estimates seem to be more robust to these types of 
errors, likely due to the fact that the GM-WM boundary is 
more impacted than the pial surface, and consequently 
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SA (which relies on the GM-pial surface boundary) and 
volume (which is a product of SA and CT) show less of an 
effect of image quality (Pardoe et al., 2016). Indeed, spa-
tial maps for cortical volume were similar to those for 
thickness, but with weaker relationships, and those for 
surface area were further attenuated still, with a few key 
spatial differences. This highlights the importance of 
careful consideration of which cortical phenotypes are 
considered in any analysis, in light of evidence that corti-
cal volume and surface area may be more reliable than 
thickness measures. It also suggests that while careful 
QC is always important, it may be particularly critical 
when considering cortical thickness measures versus 
other cortical phenotypes.

Importantly, these effects were not uniform across the 
cortex, with some regions being far more susceptible to 
image quality impacts than others, and some differing in 
directionality of effects, consistent with previous findings 
(Alexander-Bloch et al., 2016; Gilmore et al., 2021; Pardoe 
et al., 2016; Reuter et al., 2015; Rosen et al., 2018). Cor-
tical volume and surface area largely showed similar spa-
tial patterning, though with more positive relationships 
than CT, particularly for SA, Euler number, and Qoala-T. 
Some of the regions in which the strongest effects were 
observed, including the visual cortex, the temporal pole, 
and primary motor regions, are known to have unique 
morphometry which may render them more susceptible 
to issues with image quality and inaccurate surface 
reconstruction (Scholtens et al., 2015). The temporal and 
frontal poles are also regions known to have questionable 
signal quality (McCarthy et al., 2015). Other regional vari-
ations in the strength of relationship may in part be attrib-
utable to spatial differences in the magnitude of 
displacement caused by in-scanner head movement, 
due to participant positioning and restraints or cushion-
ing (Alexander-Bloch et al., 2016). Another factor appears 
to be the thickness of the region, with higher rates of sur-
face reconstruction errors in areas with thinner cortex 
causing artificially inflated thickness values (Pardoe et al., 
2016). Thus, particular care should be given to interpreta-
tion of results for regions which are demonstrably sus-
ceptible to image quality.

4.3.  Thresholding analyses

Consistent with previous work (Ducharme et  al., 2016; 
Gilmore et al., 2021; Reuter et al., 2015), effects of quality 
were significantly attenuated, but not removed, when 
excluding participants above a certain cut-off and in a 
progressive thresholding manner. Excluding participants 

with the worst image quality may be necessary to limit 
the impact of bad image quality, though it will likely not 
remove its impact entirely. The progressive thresholding 
effects were quite similar for both FSQC and Euler. For 
Euler, the initial drop off in number of significant regions 
remaining after QC occurred more quickly but subse-
quently tapered off, whereas for FSQC the drop off began 
more gradually, but less significant regions remained 
after the most stringent threshold than for Euler. In the 
supplementary Euler percent thresholding analyses, an 
inflection point for the number of significant regions 
remaining occurs around 20%, tapering off thereafter. 
The decrease was more gradual with MAD thresholding. 
Notably, the speed of attenuation of effect size with 
increasing QC threshold also varied by region. Thresh-
olding is a balancing act between decreasing the impact 
of noise and retaining meaningful sample representation 
and sufficient statistical power and thus may not be 
appropriate in all contexts. However, our analysis shows 
that even a minimal threshold can greatly improve the 
reliability of subsequent downstream results.

4.4.  Image quality affects case-control differences

Importantly, the effect sizes for quality are, on average, far 
greater than those of diagnosis, which is concerning in 
light of evidence that autistic individuals (and those with 
other clinical diagnoses) tend to move more and have 
worse image quality than neurotypical controls, in our 
dataset as well as others (Alexander-Bloch et  al., 2016; 
Pardoe et al., 2016). Thus, there is a high risk of the effects 
of image quality overshadowing potential diagnostic or 
group differences, in particular given the finding that the 
relationship between CT and quality was stronger in the 
autistic group (likely due to the greater range in quality). In 
our case-control comparisons, we observed subtle but 
significant differences depending on the extent and man-
ner in which we controlled for image quality. Many of these 
differences were consistent across ABIDE as well as the 
two replication datasets. This is particularly true when 
observing subthreshold results; regions passing FDR cor-
rection differed somewhat, likely owing to differences in 
sample size, but spatial patterning was largely overlap-
ping. Notably, when not accounting for QC in any way, 
some significant negative differences were observed (i.e., 
lower CT in autistic compared to neurotypical individuals), 
although not all of these survived FDR correction. After 
accounting for QC, these negative associations were 
diminished, while the positive associations (i.e., greater CT 
in autism than controls) were strengthened. This was again 
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consistently observed across all three datasets. Similar 
effects have been reported previously (Bedford et  al., 
2020). This is unsurprising given that apparent cortical 
thinning is known to occur with decreased quality across 
much of the cortex, coupled with poorer image quality and 
more motion in autistic individuals. This further under-
scores the importance of appropriate quality control pro-
cedures for case-control analyses.

The results of the diagnosis analyses were largely 
consistent when controlling for FSQC or Euler at thresh-
olds equating to approximately the same level of strin-
gency, with only very minor differences. Results were 
also largely consistent when thresholding by QC score 
cut-off and when controlling for QC score in the analy-
sis. However, a discrepancy was the emergence of sig-
nificant differences (greater thickness in the autistic 
group than controls) in the left superior temporal gyrus 
when including either measure as a covariate, but not 
when thresholding, in the ABIDE sample. In the absence 
of a gold-standard ground truth, it is interesting to note 
that this is a region that has often been implicated in 
autism in previous work (Bedford et  al., 2020; Ecker, 
2017; Jou et al., 2010), as well as in the two replication 
datasets post-QC (with effects in the same direction). It 
should also be noted that one region that is consistently 
significant in the case-control comparisons is the occip-
ital cortex (across all three datasets), which is also one 
of the regions in which we observe the strongest rela-
tionship with image quality. Although the effect size is 
attenuated once QC is accounted for, it remains signifi-
cant in most of the analyses.

Little work has previously examined the impact of QC 
on our ability to detect group differences or alterations 
related to specific diagnoses or conditions. However, 
several reports of the impact of QC on the effects of age 
and trajectories of neurodevelopment (Ducharme et al., 
2016; Rosen et  al., 2018; Savalia et  al., 2017) have 
demonstrated the potential for quality to influence rela-
tionships between neuroanatomy and demographic vari-
ables of interest. More specifically, motion and other 
aspects of quality have been demonstrated to both inflate 
and obscure relationships between age and cortical 
thickness, and to influence the shape of developmental 
trajectories (Alexander-Bloch et  al., 2016; Ducharme 
et al., 2016; Rosen et al., 2018; Savalia et al., 2017). The 
effect sizes for age are typically still larger than those for 
quality, and therefore unlikely to completely account for 
previously reported age effects (Alexander-Bloch et  al., 
2016); however, it may lead to the exaggeration of appar-
ent developmental effects, or ageing-related cortical thin-

ning or atrophy. Moreover, as we have demonstrated, 
when it comes to diagnostic differences, effect sizes are 
often subtle and small compared to the relatively strong 
effects of motion and quality; thus, extra care and atten-
tion to QC must be paid when studying neurodevelop-
mental and psychiatric conditions.

4.5.  Balancing options for accounting for quality  
in neuroimaging studies

The trade-off between manual and automated QC (e.g., 
here, we focused on the comparison of FSQC and Euler 
number) will of course be up to each individual researcher 
and dependent on multiple factors relevant to the spe-
cific project. We note that there is no widely accepted 
threshold for Euler denoting good versus poor-quality 
data; thus, it may be better used in combination with 
other QC methods. We also note, however, a few key 
similarities and differences that may be relevant in mak-
ing this decision. For cortical thickness, the strength and 
spatial patterning of relationships with FSQC and Euler 
number were extremely similar. Results of thresholding 
by various cut-off points using either metric also yielded 
very similar results for CT, though the number of signifi-
cant regions dropped off slightly more quickly when using 
Euler number. The relationships with cortical volume and 
surface area show more differences between FSQC and 
Euler number, in particular in the thresholding analyses, 
with more positive associations observed with Euler 
number than with FSQC. However, for all cortical pheno-
types, thresholding by either measure on the case-control 
comparison yields very similar results. Thus, multiple fac-
tors including the goals of the project, the phenotypes 
examined, and level of stringency desired will inform the 
decision between using manual or automated QC meth-
ods, or indeed a combination of the two.

Beyond deciding which tools to use, we have dis-
cussed and presented two main ways of accounting for 
quality in analyses: identifying a cut-off point and exclud-
ing all participants above or below a specific quality 
threshold, or controlling for quality scores by including 
them as a covariate in the statistical analysis. There are 
benefits and potential pitfalls for both options, and 
depending on the context one might be preferable to the 
other. Excluding participants with poor image quality is a 
common method for QC; however, while this can ensure 
that the effects of quality are minimised, there are down-
sides to removing data. First, this necessarily results in a 
reduction of sample size, and consequently power, which 
is undesirable particularly considering the cost and effort 
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required to collect neuroimaging data, especially in vul-
nerable populations. Second, and perhaps more impor-
tantly, excluding participants who are likely to have the 
lowest quality scans introduces unavoidable bias to the 
dataset: these individuals are likely to be younger and 
male, and to have a clinical diagnosis, more severe clini-
cal symptoms, and lower IQ (Alexander-Bloch et  al., 
2016; Bedford et  al., 2020; Pardoe et  al., 2016). In the 
context of clinical studies, this can result in samples 
skewed towards older participants with milder presenta-
tions and no intellectual disabilities, thereby potentially 
excluding participants who could benefit most from 
research that does not rely on verbal assessment or a 
minimum IQ (Nordahl et al., 2016). This bias needs to be 
balanced with the knowledge that poor-quality data may 
have limited utility or lead to spurious results. Also of note 
is that image quality in our sample varied significantly by 
site, highlighting the importance of properly accounting 
for site effects in multi-site analyses. As has been noted 
by previous work (Esteban et  al., 2017), scanner hard-
ware and sequences may contribute to quality; thus, 
there is unlikely to be a universal quality threshold that is 
applicable to all datasets, and this will need to be deter-
mined for each individual study.

An alternative solution is to retain all participants, and 
instead to control for QC by including quality scores as a 
covariate in the analysis. This avoids some of the above-
mentioned biases, but introduces alternate problems. 
First, retaining all scans regardless of quality risks skew-
ing results, and simply including quality as a covariate is 
unlikely to account for extreme values in the case of very 
poor-quality scans. Another issue is the potential for col-
lider bias, occurring when an independent and depen-
dent variable both influence a third variable which is 
controlled for in an analysis, leading to an apparent (but 
spurious, or inflated) association (Holmberg & Andersen, 
2022; Munafò et  al., 2018). In this case, controlling for 
quality could influence the association between diagno-
sis and cortical morphometry. However, selection bias 
can also be considered a form of collider bias, thus this is 
an issue that should be taken into account regardless of 
the QC mitigation method chosen.

Finally, to balance pros and cons and harmonise 
approaches, a hybrid solution can be implemented, 
whereby only the worst scans which are considered 
unusable are excluded, and QC is included in the model 
to correct for any residual effects caused by other lower 
quality, but still potentially usable, scans. This method 
could also include a combination of QC tools and met-
rics; for example, using an automated tool to identify and 

exclude the lowest quality images, and a manual tool to 
rate the remaining images.

4.6.  Limitations

These results should be interpreted in light of certain lim-
itations. First, no quality metric is perfect, and as men-
tioned above there is no gold standard. Without prospective 
motion trackers installed at the time of scanning, we can-
not accurately quantify motion, and all visual inspections 
of scan and surface reconstruction quality will have some 
level of subjectivity. We attempt to mitigate this by com-
paring multiple QC metrics, both automated and manually 
rated, by multiple independent raters. Next, we rely on two 
metrics, FSQC and Euler number, which are specific to 
FreeSurfer, and thus may have limited generalisability. 
However, our FSQC tool could easily be applied to other 
processing and surface reconstruction tools. We also 
focused exclusively on cortical morphometry. Given recent 
evidence that subcortical structures are also influenced by 
quality (though potentially to a lesser degree) (Gilmore 
et  al., 2021), extending the current work to subcortical 
structures, particularly in the context of clinical group dif-
ferences, could be valuable. Finally, our sample, the ABIDE 
dataset, comes from multiple sites internationally, com-
bined retrospectively. Though we accounted for this by 
using both linear mixed-effects models as well as a meta-
analytic technique in all analyses, differences between 
sites could still impact results. ABIDE also consists of a 
relatively limited demographic, including mostly children 
and young adults, a substantial proportion of whom have 
a diagnosis of autism. However, this dataset allowed us to 
examine the impact of quality on case-control differences, 
and we successfully replicated at least some of our results 
in a much larger, more representative sample.

5.  CONCLUSION

Our results highlight the importance of careful quality con-
trol of neuroimaging data, and some of the potential conse-
quences of failing to do so. We explored the effect of 
various QC metrics and mitigation techniques, and demon-
strated that these can have a significant impact on our abil-
ity to detect differences in neuroanatomy related to autism.

DATA AND CODE AVAILABILITY

The imaging rating tool, code to generate QC png 
images and analysis scripts are available at: https://
github​.com​/sbedford0​/FSQC. Our ABIDE FSQC ratings 

https://github.com/sbedford0/FSQC
https://github.com/sbedford0/FSQC
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are also available at: https://github​.com​/sbedford0​
/FSQC​/tree​/main​/ABIDE​_ratings. The full protocol can 
be found at: https://dx​.doi​.org​/10​.17504​/protocols​.io​
.kxygx9m6wg8j​/v1.

AUTHOR CONTRIBUTIONS

Saashi A. Bedford: Conceptualisation, Methodology, 
Software, Validation, Formal analysis, Investigation, 
Resources, Data curation, Writing—original draft, 
Writing—review & editing, Visualisation, and Project 
administration. Alfredo Ortiz-Rosa: Resources, Data 
curation, and Writing—review & editing. Jenna M. Schab-
dach: Resources, Data curation, and Writing—review & 
editing. Manuela Costantino: Resources, Data curation, 
and Writing—review & editing. Stephanie Tullo: 
Resources, Data curation, and Writing—review & editing. 
Tom Piercy: Software, Writing—review & editing. Meng-
Chuan Lai: Writing—review & editing, Supervision. 
Michael V. Lombardo: Writing—review & editing, Supervi-
sion. Adriana Di Martino: Data curation, Writing—review 
& editing, and Supervision. Gabriel A. Devenyi: Resources, 
Data curation, Writing—review & editing, and Supervi-
sion. M. Mallar Chakravarty: Resources, Data curation, 
Writing—review & editing, and Supervision. Aaron F. 
Alexander-Bloch: Methodology, Resources, Data cura-
tion, Writing—review & editing, and Supervision. Jakob 
Seidlitz: Methodology, Resources, Data curation, 
Writing—review & editing, and Supervision. Simon Baron-
Cohen: Conceptualisation, Resources, Writing—review & 
editing, Supervision, and Funding acquisition. Richard 
A.I. Bethlehem: Conceptualisation, Methodology, Soft-
ware, Investigation, Resources, Data curation, Writing—
Original draft, Writing—review & editing, Supervision, and 
Funding acquisition.

ETHICS

Written informed consent was obtained from all partici-
pants and/or their caregivers, and ethical approval was 
granted by the institutional ethical review committee at 
each participating institution. For details, see individual 
site details at: http://fcon​_1000​.projects​.nitrc​.org​/indi​
/abide​/abide​_I​.html.

FUNDING

S.A.B. was supported by the Trinity College Coutts-Trotter 
Studentship. A.F.A.-B., J.S., and J.M.S. were supported 
by NIMH K08MH120564. A.D.M. was supported by NIMH 

R21MH107045, R01MH105506, and R01MH115363. 
M.M.C. is funded by the Canadian Institutes of Health 
Research, the Natural Sciences and Engineering Research 
Council of Canada, the Fondation de Recherches Santé 
Québec, and Healthy Brains for Healthy Lives. M.-C.L. 
was supported by a Canadian Institutes of Health 
Research Sex and Gender Science Chair (GSB 171373) 
and an Academic Scholars Award from the Department of 
Psychiatry, University of Toronto. M.V.L. was supported 
by funding from the European Research Council (ERC) 
under the European Union's Horizon 2020 research and 
innovation programme under grant agreement No 755816. 
S.B.-C. received funding from the Wellcome Trust 
214322\Z\18\Z. For the purpose of Open Access, the 
author has applied a CC BY public copyright licence to 
any Author Accepted Manuscript version arising from this 
submission. The results leading to this publication have 
received funding from the Innovative Medicines Initiative 2 
Joint Undertaking under grant agreement No 777394 for 
the project AIMS-2-TRIALS. This Joint Undertaking 
receives support from the European Union's Horizon 2020 
research and innovation programme and EFPIA and 
AUTISM SPEAKS, Autistica, SFARI. The funders had no 
role in the design of the study; in the collection, analyses, 
or interpretation of data; in the writing of the manuscript, 
or in the decision to publish the results. S.B.-C. also 
received funding from the Autism Centre of Excellence, 
SFARI, the Templeton World Charitable Fund, and the 
MRC. All research at the Department of Psychiatry in the 
University of Cambridge is supported by the NIHR Cam-
bridge Biomedical Research Centre (BRC-1215-20014) 
and NIHR Applied Research Collaboration East of 
England. Any views expressed are those of the author(s) 
and not necessarily those of the funders, IHU-JU2, the 
NIHR, or the Department of Health and Social Care. This 
research was conducted with the support of the Ontario 
Brain Institute (POND, PIs: Anagnostou/Lerch; grant num-
ber IDS-I 1-02), an independent non-profit corporation, 
funded partially by the Ontario government. The opinions, 
results, and conclusions are those of the authors and no 
endorsement by the Ontario Brain Institute is intended or 
should be inferred.

DECLARATION OF COMPETING INTEREST

J.S., R.A.I.B., and A.F.A.-B. hold shares in and are direc-
tors of Centile Bioscience Inc. A.F.A.-B. receives consult-
ing income from Octave Bioscience. Other authors report 
no related funding support, financial or potential conflicts 
of interest.

https://github.com/sbedford0/FSQC/tree/main/ABIDE_ratings
https://github.com/sbedford0/FSQC/tree/main/ABIDE_ratings
https://dx.doi.org/10.17504/protocols.io.kxygx9m6wg8j/v1
https://dx.doi.org/10.17504/protocols.io.kxygx9m6wg8j/v1
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html


19

S.A. Bedford, A. Ortiz-Rosa, J.M. Schabdach et al.	 Imaging Neuroscience, Volume 1, 2023

ACKNOWLEDGEMENTS

We thank the POND network co-directors, Drs Evdokia 
Anagnostou and Jason Lerch, as well as the rest of the 
POND network, for sharing their data with us for the rep-
lication analyses. POND is funded by the Ontario Brain 
Institute (grant number IDS-I 1-02).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available with 
the online version here: https://doi​.org​/10​.1162​/imag​_a​
_00022.

REFERENCES

Ai, L., Craddock, R. C., Tottenham, N., Dyke, J. P., Lim, 
R., Colcombe, S., Milham, M., & Franco, A. R. (2021). 
Is it time to switch your T1W sequence? Assessing the 
impact of prospective motion correction on the reliability 
and quality of structural imaging. NeuroImage, 226, 
117585. https://doi​.org​/10​.1016​/j​.neuroimage​.2020​
.117585

Alexander-Bloch, A., Clasen, L., Stockman, M., Ronan, L., 
Lalonde, F., Giedd, J., & Raznahan, A. (2016). Subtle in-
scanner motion biases automated measurement of brain 
anatomy from in vivo MRI. Human Brain Mapping, 2397, 
2385–2397. https://doi​.org​/10​.1002​/hbm​.23180

Backhausen, L. L., Herting, M. M., Buse, J., Roessner, V., 
Smolka, M. N., & Vetter, N. C. (2016). Quality control 
of structural MRI images applied using FreeSurfer-a 
hands-on workflow to rate motion artifacts. Frontiers in 
Neuroscience, 10, 558. https://doi​.org​/10​.3389​/FNINS​
.2016​.00558

Bastiani, M., Cottaar, M., Fitzgibbon, S. P., Suri, S., 
Alfaro-Almagro, F., Sotiropoulos, S. N., Jbabdi, S., & 
Andersson, J. L. R. (2019). Automated quality control for 
within and between studies diffusion MRI data using a 
non-parametric framework for movement and distortion 
correction. NeuroImage, 184, 801–812. https://doi​.org​/10​
.1016​/j​.neuroimage​.2018​.09​.073

Baum, G. L., Roalf, D. R., Cook, P. A., Ciric, R., Rosen, 
A. F. G., Xia, C., Elliott, M. A., Ruparel, K., Verma, 
R., Tunç, B., Gur, R. C., Gur, R. E., Bassett, D. S., & 
Satterthwaite, T. D. (2018). The impact of in-scanner 
head motion on structural connectivity derived from 
diffusion MRI. NeuroImage, 173, 275–286. https://doi​.org​
/10​.1016​/j​.neuroimage​.2018​.02​.041

Bedford, S. A., Park, M. T. M., Devenyi, G. A., Tullo, S., 
Germann, J., Patel, R., Anagnostou, E., Baron-Cohen, 
S., Bullmore, E. T., Chura, L. R., Craig, M. C., Ecker, 
C., Floris, D. L., Holt, R. J., Lenroot, R., Lerch, J. P., 
Lombardo, M. V., Murphy, D. G. M., Raznahan, A., … 
Chakravarty, M. M. (2020). Large-scale analyses of the 
relationship between sex, age and intelligence quotient 
heterogeneity and cortical morphometry in autism 
spectrum disorder. Molecular Psychiatry, 25(3), 614–628. 
https://doi​.org​/10​.1038​/s41380​-019​-0420​-6

Bethlehem, R. A. I., Romero-Garcia, R., Mak, E., Bullmore, 
E. T., & Baron-Cohen, S. (2017). Structural covariance 

networks in children with autism or ADHD. Cerebral 
Cortex, 27(8), 4267–4276. https://doi​.org​/10​.1093​/cercor​
/bhx135

Bethlehem, R. A. I., Seidlitz, J., Romero-Garcia, R., 
Trakoshis, S., Dumas, G., & Lombardo, M. V. (2020). 
A normative modelling approach reveals age-atypical 
cortical thickness in a subgroup of males with autism 
spectrum disorder. Communications Biology, 3(1), 486. 
https://doi​.org​/10​.1038​/s42003​-020​-01212​-9

Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., 
Anderson, K. M., Adamson, C., Adler, S., Alexopoulos, 
G. S., Anagnostou, E., Areces-Gonzalez, A., Astle, D. E., 
Auyeung, B., Ayub, M., Bae, J., Ball, G., Baron-Cohen, 
S., Beare, R., Bedford, S. A., Benegal, V., … Alexander-
Bloch, A. F. (2022). Brain charts for the human lifespan. 
Nature, 604(7906), 525–533. https://doi​.org​/10​.1101​
/2022​.12​.05​.22283091

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., 
Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, 
A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & 
Killiany, R. J. (2006). An automated labeling system for 
subdividing the human cerebral cortex on MRI scans 
into gyral based regions of interest. NeuroImage, 31(3), 
968–980. https://doi​.org​/10​.1016​/j​.neuroimage​.2006​ 
.01​.021

Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., 
Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, 
L., Beggiato, A., Bernaerts, S., Blanken, L. M. E., 
Bookheimer, S. Y., Braden, B. B., Byrge, L., Castellanos, 
F. X., Dapretto, M., Delorme, R., Fair, D. A., Fishman, 
I., … Milham, M. P. (2017). Enhancing studies of the 
connectome in autism using the autism brain imaging 
data exchange II. Scientific Data, 4, 170010. https://doi​
.org​/10​.1038​/sdata​.2017​.10

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, 
F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, 
S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., 
Ertl-Wagner, B., Fair, D. A., Gallagher, L., Kennedy, D. P., 
Keown, C. L., Keysers, C., … Milham, M. P. (2014). The 
autism brain imaging data exchange: Towards a large-
scale evaluation of the intrinsic brain architecture in 
autism. Molecular Psychiatry, 19(6), 659–667. https://doi​
.org​/10​.1038​/mp​.2013​.78

Ducharme, S., Albaugh, M. D., Nguyen, T.-V., Hudziak, J. J., 
Mateos-Pérez, J. M., Labbe, A., Evans, A. C., Karama, 
S., & Brain Development Cooperative Group. (2016). 
Trajectories of cortical thickness maturation in normal 
brain development—The importance of quality control 
procedures. NeuroImage, 125, 267–279. https://doi​.org​
/10​.1016​/j​.neuroimage​.2015​.10​.010

Ecker, C. (2017). The neuroanatomy of autism spectrum 
disorder: An overview of structural neuroimaging findings 
and their translatability to the clinical setting. Autism: The 
International Journal of Research and Practice, 21(1), 
18–28. https://doi​.org​/10​.1177​/1362361315627136

Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., 
Poldrack, R. A., & Gorgolewski, K. J. (2017). MRIQC: 
Advancing the automatic prediction of image quality 
in MRI from unseen sites. PLoS One, 12(9), e0184661. 
https://doi​.org​/10​.1371​/JOURNAL​.PONE​.0184661

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2012​.01​.021

Floris, D. L., Lai, M.-C., Nath, T., Milham, M. P., & Di Martino, 
A. (2018). Network-specific sex differentiation of intrinsic 

https://doi.org/10.1162/imag_a_00022
https://doi.org/10.1162/imag_a_00022
https://doi.org/10.1016/j.neuroimage.2020.117585
https://doi.org/10.1016/j.neuroimage.2020.117585
https://doi.org/10.1002/hbm.23180
https://doi.org/10.3389/FNINS.2016.00558
https://doi.org/10.3389/FNINS.2016.00558
https://doi.org/10.1016/j.neuroimage.2018.09.073
https://doi.org/10.1016/j.neuroimage.2018.09.073
https://doi.org/10.1016/j.neuroimage.2018.02.041
https://doi.org/10.1016/j.neuroimage.2018.02.041
https://doi.org/10.1038/s41380-019-0420-6
https://doi.org/10.1093/cercor/bhx135
https://doi.org/10.1093/cercor/bhx135
https://doi.org/10.1038/s42003-020-01212-9
https://doi.org/10.1101/2022.12.05.22283091
https://doi.org/10.1101/2022.12.05.22283091
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1038/sdata.2017.10
https://doi.org/10.1038/sdata.2017.10
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1016/j.neuroimage.2015.10.010
https://doi.org/10.1016/j.neuroimage.2015.10.010
https://doi.org/10.1177/1362361315627136
https://doi.org/10.1371/JOURNAL.PONE.0184661
https://doi.org/10.1016/j.neuroimage.2012.01.021


20

S.A. Bedford, A. Ortiz-Rosa, J.M. Schabdach et al.	 Imaging Neuroscience, Volume 1, 2023

brain function in males with autism. Molecular Autism, 9, 
17. https://doi​.org​/10​.1186​/s13229​-018​-0192​-x

Fürtjes, A. E., Cole, J. H., Couvy-Duchesne, B., & Ritchie, 
S. J. (2023). A quantified comparison of cortical atlases 
on the basis of trait morphometricity. Cortex; A Journal 
Devoted to the Study of the Nervous System and 
Behavior, 158, 110–126. https://doi​.org​/10​.1016​/j​.cortex​
.2022​.11​.001

Gilmore, A. D., Buser, N. J., & Hanson, J. L. (2021). 
Variations in structural MRI quality significantly impact 
commonly used measures of brain anatomy. Brain 
Informatics, 8(1), Article number 7. https://doi​.org​/10​
.1186​/S40708​-021​-00128​-2

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, 
C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, 
J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van 
Essen, D. C. (2016). A multi-modal parcellation of human 
cerebral cortex Europe PMC Funders Group. Nature, 
536(7615), 171–178. https://doi​.org​/10​.1038​/nature18933

Goto, M., Abe, O., Miyati, T., Yamasue, H., Gomi, T., & 
Takeda, T. (2016). Head motion and correction methods 
in resting-state functional MRI. Magnetic Resonance in 
Medical Sciences: MRMS: An Official Journal of Japan 
Society of Magnetic Resonance in Medicine, 15(2), 
178–186. https://doi​.org​/10​.2463​/mrms​.rev​.2015​-0060

Haar, S., Berman, S., Behrmann, M., & Dinstein, I. (2016). 
Anatomical abnormalities in autism? Cerebral Cortex, 
26(4), 1440–1452. https://doi​.org​/10​.1093​/cercor​/bhu242

Hoffman, G. E., & Schadt, E. E. (2016). variancePartition: 
Interpreting drivers of variation in complex gene 
expression studies. BMC Bioinformatics, 17(1), Article 
number 483. https://doi​.org​/10​.1186​/s12859​-016​-1323​-z

Holmberg, M. J., & Andersen, L. W. (2022). Collider bias. 
JAMA, 327(13), 1282–1283. https://doi​.org​/10​.1001​/jama​
.2022​.1820

Jou, R. J., Minshew, N. J., Keshavan, M. S., Vitale, M. P., 
& Hardan, A. Y. (2010). Enlarged right superior temporal 
gyrus in children and adolescents with autism. Brain 
Research, 1360, 205–212. https://doi​.org​/10​.1016​/j​
.brainres​.2010​.09​.005

Keshavan, A., Yeatman, J. D., & Rokem, A. (2019). 
Combining citizen science and deep learning to amplify 
expertise in neuroimaging. Frontiers in Neuroinformatics, 
13, 29. https://doi​.org​/10​.3389​/fninf​.2019​.00029

Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., 
Carbonell, F., & Evans, A. C. (2017). Cortical thickness 
abnormalities in autism spectrum disorders through late 
childhood, adolescence, and adulthood: A large-scale 
MRI study. Cerebral Cortex, 27(3), 1721–1731. https://doi​
.org​/10​.1093​/cercor​/bhx038

Klapwijk, E. T., van de Kamp, F., van der Meulen, M., 
Peters, S., & Wierenga, L. M. (2019). Qoala-T: A 
supervised-learning tool for quality control of FreeSurfer 
segmented MRI data. NeuroImage, 189, 116–129. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2019​.01​.014

Kohli, J. S., Kinnear, M. K., Fong, C. H., Fishman, I., Carper, 
R. A., & Müller, R.-A. (2019). Local cortical gyrification is 
increased in children with autism spectrum disorders, but 
decreases rapidly in adolescents. Cerebral Cortex, 29(6), 
2412–2423. https://doi​.org​/10​.1093​/cercor​/bhy111

Makowski, C., Lepage, M., & Evans, A. C. (2019). Head 
motion: The dirty little secret of neuroimaging in 
psychiatry. Journal of Psychiatry & Neuroscience: JPN, 
44(1), 62–68. https://doi​.org​/10​.1503​/jpn​.180022

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, 
D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, 
W., Miller, R. L., Hendrickson, T. J., Malone, S. M., 
Kandala, S., Feczko, E., Miranda-Dominguez, O., 
Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M., 
Doyle, O., … Dosenbach, N. U. F. (2022). Reproducible 
brain-wide association studies require thousands of 
individuals. Nature, 603(7902), 654–660. https://doi​.org​
/10​.1038​/s41586​-022​-04492​-9

McCarthy, C. S., Ramprashad, A., Thompson, C., Botti, 
J.-A., Coman, I. L., & Kates, W. R. (2015). A comparison 
of FreeSurfer-generated data with and without manual 
intervention. Frontiers in Neuroscience, 9, 379. https://
doi​.org​/10​.3389​/fnins​.2015​.00379

Mortamet, B., Bernstein, M. A., Jack, C. R., Jr, Gunter, J. L., 
Ward, C., Britson, P. J., Meuli, R., Thiran, J.-P., Krueger, 
G., & Alzheimer’s Disease Neuroimaging Initiative. (2009). 
Automatic quality assessment in structural brain magnetic 
resonance imaging. Magnetic Resonance in Medicine, 
62(2), 365–372. https://doi​.org​/10​.1002​/mrm​.21992

Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M., & 
Davey Smith, G. (2018). Collider scope: When selection 
bias can substantially influence observed associations. 
International Journal of Epidemiology, 47(1), 226–235. 
https://doi​.org​/10​.1093​/ije​/dyx206

Nakua, H., Hawco, C., Forde, N. J., Joseph, M., Grillet, M., 
Johnson, D., Jacobs, G. R., Hill, S., Voineskos, A. N., 
Wheeler, A. L., Lai, M.-C., Szatmari, P., Georgiades, S., 
Nicolson, R., Schachar, R., Crosbie, J., Anagnostou, 
E., Lerch, J. P., Arnold, P. D., & Ameis, S. H. (2023). 
Systematic comparisons of different quality control 
approaches applied to three large pediatric neuroimaging 
datasets. NeuroImage, 274, 120119. https://doi​.org​/10​
.1016​/j​.neuroimage​.2023​.120119

Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, 
A. L., Lange, N., Bigler, E. D., Lainhart, J. E., & Anderson, 
J. S. (2014). Abnormal lateralization of functional 
connectivity between language and default mode regions 
in autism. Molecular Autism, 5(1), 8. https://doi​.org​/10​
.1186​/2040​-2392​-5​-8

Nordahl, C. W., Mello, M., Shen, A. M., Shen, M. D., 
Vismara, L. A., Li, D., Harrington, K., Tanase, C., 
Goodlin-Jones, B., Rogers, S., Abbeduto, L., & Amaral, 
D. G. (2016). Methods for acquiring MRI data in 
children with autism spectrum disorder and intellectual 
impairment without the use of sedation. Journal of 
Neurodevelopmental Disorders, 8, 20. https://doi​.org​/10​
.1186​/s11689​-016​-9154​-9

Olafson, E., Bedford, S. A., Devenyi, G. A., Patel, R.,  
Tullo, S., Park, M. T. M., Parent, O., Anagnostou, 
E., Baron-Cohen, S., Bullmore, E. T., Chura, L. R., 
Craig, M. C., Ecker, C., Floris, D. L., Holt, R. J., 
Lenroot, R., Lerch, J. P., Lombardo, M. V., Murphy, 
D. G. M., … Chakravarty, M. M. (2021). Examining the 
boundary sharpness coefficient as an index of cortical 
microstructure in autism spectrum disorder. Cerebral 
Cortex, 31(7), 3338–3352. https://doi​.org​/10​.1093​/cercor​
/bhab015

Pardoe, H. R., Kucharsky Hiess, R., & Kuzniecky, R. (2016). 
Motion and morphometry in clinical and nonclinical 
populations. NeuroImage, 135, 177–185. https://doi​.org​
/10​.1016​/j​.neuroimage​.2016​.05​.005

Postema, M. C., van Rooij, D., Anagnostou, E., Arango, C., 
Auzias, G., Behrmann, M., Filho, G. B., Calderoni, S., 

https://doi.org/10.1186/s13229-018-0192-x
https://doi.org/10.1016/j.cortex.2022.11.001
https://doi.org/10.1016/j.cortex.2022.11.001
https://doi.org/10.1186/S40708-021-00128-2
https://doi.org/10.1186/S40708-021-00128-2
https://doi.org/10.1038/nature18933
https://doi.org/10.2463/mrms.rev.2015-0060
https://doi.org/10.1093/cercor/bhu242
https://doi.org/10.1186/s12859-016-1323-z
https://doi.org/10.1001/jama.2022.1820
https://doi.org/10.1001/jama.2022.1820
https://doi.org/10.1016/j.brainres.2010.09.005
https://doi.org/10.1016/j.brainres.2010.09.005
https://doi.org/10.3389/fninf.2019.00029
https://doi.org/10.1093/cercor/bhx038
https://doi.org/10.1093/cercor/bhx038
https://doi.org/10.1016/j.neuroimage.2019.01.014
https://doi.org/10.1093/cercor/bhy111
https://doi.org/10.1503/jpn.180022
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.3389/fnins.2015.00379
https://doi.org/10.3389/fnins.2015.00379
https://doi.org/10.1002/mrm.21992
https://doi.org/10.1093/ije/dyx206
https://doi.org/10.1016/j.neuroimage.2023.120119
https://doi.org/10.1016/j.neuroimage.2023.120119
https://doi.org/10.1186/2040-2392-5-8
https://doi.org/10.1186/2040-2392-5-8
https://doi.org/10.1186/s11689-016-9154-9
https://doi.org/10.1186/s11689-016-9154-9
https://doi.org/10.1093/cercor/bhab015
https://doi.org/10.1093/cercor/bhab015
https://doi.org/10.1016/j.neuroimage.2016.05.005
https://doi.org/10.1016/j.neuroimage.2016.05.005


21

S.A. Bedford, A. Ortiz-Rosa, J.M. Schabdach et al.	 Imaging Neuroscience, Volume 1, 2023

Calvo, R., Daly, E., Deruelle, C., Di Martino, A., Dinstein, 
I., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, 
D., Fedor, J., … Francks, C. (2019). Altered structural 
brain asymmetry in autism spectrum disorder in a study 
of 54 datasets. Nature Communications, 10(1), 4958. 
https://doi​.org​/10​.1038​/s41467​-019​-13005​-8

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, 
B. L., & Petersen, S. E. (2012). Spurious but systematic 
correlations in functional connectivity MRI networks arise 
from subject motion. NeuroImage, 59(3), 2142–2154. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2011​.10​.018

Protocol for Quality Control and Summary Statistics « 
ENIGMA. (n.d.). Retrieved March 22, 2022, from https://
enigma​.ini​.usc​.edu​/protocols​/imaging​-protocols​/protocol​
-for​-quality​-control​-and​-summary​-statistics/

Raamana, P. R., Theyers, A., Selliah, T., Bhati, P., Arnott, 
S. R., Hassel, S., Nanayakkara, N. D., Scott, C. J. M., 
Harris, J., Zamyadi, M., Lam, R. W., Milev, R., Müller, D. J., 
Rotzinger, S., Frey, B. N., Kennedy, S. H., Black, S. E., 
Lang, A., Masellis, M., … Strother, S. C. (2021). Visual 
QC protocol for FreeSurfer cortical parcellations from 
anatomical MRI. bioRxiv, 10(11), 2020.09.07.286807. 
https://doi​.org​/10​.1101​/2020​.09​.07​.286807

Ray, S., Miller, M., Karalunas, S., Robertson, C., Grayson, 
D. S., Cary, R. P., Hawkey, E., Painter, J. G., Kriz, D., 
Fombonne, E., Nigg, J. T., & Fair, D. A. (2014). Structural 
and functional connectivity of the human brain in autism 
spectrum disorders and attention-deficit/hyperactivity 
disorder: A rich club-organization study. Human Brain 
Mapping, 35(12), 6032–6048. https://doi​.org​/10​.1002​
/hbm​.22603

Reuter, M., Tisdall, M. D., Qureshi, A., Buckner, R. L., van 
der Kouwe, A. J. W., & Fischl, B. (2015). Head motion 
during MRI acquisition reduces gray matter volume and 
thickness estimates. NeuroImage, 107, 107–115. https://
doi​.org​/10​.1016​/j​.neuroimage​.2014​.12​.006

Rosen, A. F. G., Roalf, D. R., Ruparel, K., Blake, J., 
Seelaus, K., Villa, L. P., Ciric, R., Cook, P. A., Davatzikos, 
C., Elliott, M. A., Garcia de La Garza, A., Gennatas, 
E. D., Quarmley, M., Schmitt, J. E., Shinohara, R. T., 
Tisdall, M. D., Craddock, R. C., Gur, R. E., Gur, R. C., 
& Satterthwaite, T. D. (2018). Quantitative assessment 
of structural image quality. NeuroImage, 169, 407–418. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2017​.12​.059

Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., 
Elliott, M. A., Hakonarson, H., Gur, R. C., & Gur, R. E. 
(2012). Impact of in-scanner head motion on multiple 
measures of functional connectivity: Relevance for 
studies of neurodevelopment in youth. NeuroImage, 
60(1), 623–632. https://doi​.org​/10​.1016​/j​.neuroimage​
.2011​.12​.063

Savalia, N. K., Agres, P. F., Chan, M. Y., Feczko, E. J., 
Kennedy, K. M., & Wig, G. S. (2017). Motion-related 
artifacts in structural brain images revealed with 
independent estimates of in-scanner head motion. 
Human Brain Mapping, 38(1), 472–492. https://doi​.org​/10​
.1002​/hbm​.23397

Schaer, M., Kochalka, J., Padmanabhan, A., Supekar, K., & 
Menon, V. (2015). Sex differences in cortical volume and 
gyrification in autism. Molecular Autism, 6(1), 42. https://
doi​.org​/10​.1186​/s13229​-015​-0035​-y

Scholtens, L. H., de Reus, M. A., & van den Heuvel, M. P. 
(2015). Linking contemporary high resolution magnetic 
resonance imaging to the von Economo legacy: A 
study on the comparison of MRI cortical thickness and 
histological measurements of cortical structure. Human 
Brain Mapping, 36(8), 3038–3046. https://doi​.org​/10​
.1002​/hbm​.22826

Shehzad, Z., Giavasis, S., Li, Q., Benhajali, Y., Yan, 
C., Yang, Z., Milham, M., Bellec, P., & Craddock, C. 
(2015). The preprocessed connectomes project quality 
assessment protocol—A resource for measuring the 
quality of MRI data. Frontiers in Neuroscience, 9. https://
doi​.org​/10​.3389​/conf​.fnins​.2015​.91​.00047

Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., 
Vasquez, A. A., Renteria, M. E., Toro, R., Jahanshad, N., 
Schumann, G., Franke, B., Wright, M. J., Martin, N. G., 
Agartz, I., Alda, M., Alhusaini, S., Almasy, L., Almeida, 
J., Alpert, K., Andreasen, N. C., … Alzheimer’s Disease 
Neuroimaging Initiative, EPIGEN Consortium, IMAGEN 
Consortium, Saguenay Youth Study (SYS) Group. (2014). 
The ENIGMA consortium: Large-scale collaborative 
analyses of neuroimaging and genetic data. Brain 
Imaging and Behavior, 8(2), 153–182. https://doi​.org​/10​
.1007​/s11682​-013​-9269​-5

Tisdall, M. D., Reuter, M., Qureshi, A., Buckner, R. L., 
Fischl, B., & Van Der Kouwe, A. J. W. (2016). Prospective 
motion correction with volumetric navigators (vNavs) 
reduces the bias and variance in brain morphometry 
induced by subject motion. NeuroImage, 127, 11–22. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2015​.11​.054

Turner, A. H., Greenspan, K. S., & van Erp, T. G. M. (2016). 
Pallidum and lateral ventricle volume enlargement 
in autism spectrum disorder. Psychiatry Research. 
Neuroimaging, 252, 40–45. https://doi​.org​/10​.1016​/j​
.pscychresns​.2016​.04​.003

Valk, S. L., Di Martino, A., Milham, M. P., & Bernhardt, 
B. C. (2015). Multicenter mapping of structural network 
alterations in autism. Human Brain Mapping, 36(6), 
2364–2373. https://doi​.org​/10​.1002​/hbm​.22776

van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). 
The influence of head motion on intrinsic functional 
connectivity MRI. NeuroImage, 59(1), 431–438. https://
doi​.org​/10​.1016​/j​.neuroimage​.2011​.07​.044

Van Essen, D. C., & Glasser, M. F. (2016). The Human 
Connectome Project: Progress and prospects. 
Cerebrum: The Dana Forum on Brain Science, 2016, 
cer-10-16. https://www​.ncbi​.nlm​.nih​.gov​/pmc​/articles​
/PMC5198757/

Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., 
Cairns, N. J., Cedarbaum, J., Donohue, M. C., Green, 
R. C., Harvey, D., Jack, C. R., Jagust, W., Morris, J. C., 
Petersen, R. C., Saykin, A. J., Shaw, L., Thompson, 
P. M., Toga, A. W., & Trojanowski, J. Q. (2015). Impact 
of the Alzheimer’s disease neuroimaging initiative, 2004 
to 2014. Alzheimer’s & Dementia: The Journal of the 
Alzheimer's Association, 11(7), 865–884. https://doi​.org​
/10​.1016​/j​.jalz​.2015​.04​.005

Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & 
Fischl, B. (2014). Spurious group differences due to head 
motion in a diffusion MRI study. NeuroImage, 88, 79–90. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2013​.11​.027

https://doi.org/10.1038/s41467-019-13005-8
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://enigma.ini.usc.edu/protocols/imaging-protocols/protocol-for-quality-control-and-summary-statistics/
https://enigma.ini.usc.edu/protocols/imaging-protocols/protocol-for-quality-control-and-summary-statistics/
https://enigma.ini.usc.edu/protocols/imaging-protocols/protocol-for-quality-control-and-summary-statistics/
https://doi.org/10.1101/2020.09.07.286807
https://doi.org/10.1002/hbm.22603
https://doi.org/10.1002/hbm.22603
https://doi.org/10.1016/j.neuroimage.2014.12.006
https://doi.org/10.1016/j.neuroimage.2014.12.006
https://doi.org/10.1016/j.neuroimage.2017.12.059
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1002/hbm.23397
https://doi.org/10.1002/hbm.23397
https://doi.org/10.1186/s13229-015-0035-y
https://doi.org/10.1186/s13229-015-0035-y
https://doi.org/10.1002/hbm.22826
https://doi.org/10.1002/hbm.22826
https://doi.org/10.3389/conf.fnins.2015.91.00047
https://doi.org/10.3389/conf.fnins.2015.91.00047
https://doi.org/10.1007/s11682-013-9269-5
https://doi.org/10.1007/s11682-013-9269-5
https://doi.org/10.1016/j.neuroimage.2015.11.054
https://doi.org/10.1016/j.pscychresns.2016.04.003
https://doi.org/10.1016/j.pscychresns.2016.04.003
https://doi.org/10.1002/hbm.22776
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198757/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198757/
https://doi.org/10.1016/j.jalz.2015.04.005
https://doi.org/10.1016/j.jalz.2015.04.005
https://doi.org/10.1016/j.neuroimage.2013.11.027

